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NONLINEAR HYPERBOLIC WAVES

John K. Hunter ~ Joseph B. Keller
Colorado State University * Stanford University
Ft Collins, CO 80524, U.S.A. Stanford, CA 94305, U.S.A.

We develop a formal asymptotic theory for hyperbolic conservation laws with large
amplitude, rapidly varying initial data [1). For small times, the solution is described
by a system of conservation laws in a single space variable. Shocks form, and the
solution rapidly decays. For larger times, the solution propagates along rays
according to weakly nonlinear geometrical optics.  Initial data for the weakly
nonlinear solution is obtained by matching with the long time behavior of the
solution to the conservation laws in one space variable.

Let u(x,t;¢) be a solution of the strictly hyperbolic, genuinely nonlinear system of
conservation laws,

6tu + g ax_fi(u) =0, f: R™ o R™,

(1) i=1 i
u(x,0;¢) = UO[X,C—I‘I’(X)];

where uo(x,n) has compact support in 7. We shall describe the asymptotic behavior
of uas e » 0. For short times, of the order e,

u(x,t;e) ~ v[x,e_l\ll(x),e_lt] as ¢ - 0,
where v(x,n,7) satisfies

n

3Tv + 8ﬂg(x,v) = 0, g(x,v) := § BX.\I!(x) fi(v),

: i=1 "
(2)

v(x,10) = uylx,1).

Equation (2) is a system of conservation laws in one space dimension, in which x




occurs as a parameter.

For times of the order one, u(xt;¢) is asymptotic to a weakly nonlinear

geometrical optics solution (2], which has the form
m

(3) u(x,t;e) ~ 6(6).2laj[x,t,fl¢j(x,t)]Rj(x,t) as ¢ =+ 0.
1=

In (3), the wave amplitudes 3 the phase functions ¢j and the eigenvectors Rj satisly

the equations derived in [1]. In particular, the wave amplitudes solve inviscid

Burgers' equations of the form,

1 2
(6, + Cj(x,t)-V]aj + QMj(x,t) 30[aj ) + Qj(x,t)aj = 0.

These equations must be supplemented by initial values of the 3 and ¢j’ and by

specification of the amplitude parameter §, which are obtained by matching (3) as
t + 0+, with the solution of (2) as 7 4 +w.
The solution of (2) approaches a superposition of N-waves as 7 4 +wo [3].
Matching implies that
5 = 51/2,

¢j(x,0) = ¥(x), atd)j(x,O) = —Aj(x),

h

where ,\j(x) is the jt eigenvalue of D_g(x,v). Also, as t + 0+,

a0xt,0) ~ Myx0) g, if —[—2pj(x)t]1/2 <8< [2qj(x)t]1/2,

aj(x,t,0) ~ 0, otherwise.
Here, Mj is a nonlinear self interaction coefficient (which is nonzero for genuinely
nonlinear waves), and pj and qj are the N—wave invariants of the jth N-wave in the

large time asymptotic solution of (2).

A similar theory is possible when uO(x,n) is periodic in 7, but it is only
complete for a scalar equation and 2 x 2 systems. 3Tl\is is for two reasons: the
large time behavior of periodic solutions to general systems of conservation laws in

one space variable is not known; and there are difficulties in the weakly nonlinear




TTTTTTeRF WS Y T

theory for resonantly interacting periodic waves.
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Numerical Solution of Flow Equations
An Alrcraft Designer's View

Josef Mertens, Klaus Becker

Department of Theoretical Aerodynamics
MBB-UT, TE 212, Hiinefelderstr. 1-5, D-2800 Bremen 1

Today the most accurate and cost effective industrial codes used for aircraft
design are based on full potential equations coupled with boundary layer
equations. But these are not capable to solve complicated three-dimensional
problems of vortical flows and shocks. On the other hand Euler and Navier-
Stokes codes are too expensive and not sufficlently accurate for design pur-
poses, especially towards drag and Interference prediction. The reasons for
these deficiencies are Investigated and a way to overcome them by future
developments is demonstrated.
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ON THE POSSIBILITY AND THE STRUCTURE OF OSCILLATING
SOLUTIONS TO SOME NONLINEAR SYSTEMS OF
CONSERVATION LAWS.

Michel RASCLE, Département de Mathématiques, Université de Nice, Parc Valrose
06034 NICE CEDEX, FRANCE

Abstract:

We study the convergence of a sequence of approximate solutions to
some nonlinear 2 x 2 strictly hyperbolic systems of conservation laws, typically the
(vanishing) viscosity method, in which the Cauchy problem:

(1) du+dgf(u)=-0

u(x,0) = ug(x)
(vhere f: R2 - R2is asmooth function) is approximated by:
(l) 3 +&f(ud - £y DAy

u°(x,0) = ug(x)

vhere D is a diffusion matrix We only assume that this sequence (uf) satisfies a
uniform L estimate:

@ Iff<c

and the easy energy estimate :

3) e papfy<c

Under these assumptions, ve study the relations between the weak-star limits g* in
L of g(if) for any continuous function g. In other vords, at any point (x,t) we
study the so-called Young measure v,,t: g g*(x,t). We recall that (vx,t) isa

WO L e o RPN < LA (i o RO ) Ly (s




2

family of probability measures which operate in the phase plane, and that the strong
convergencs (no oscillation) corresponds to the case where these probability
msasures are delta-functions.

By using very simple ideas of compensated compactness, in the spirit of previous
results of L. TARTAR, R.J. DIPERNA, D. SERRE , we have previously studied the
structure of this family of Young measures. Roughly speaking, “we can pass to the
ﬁmi;onﬂnprodmtofttnkimmmlnvuimﬁsofﬂnsyshm‘.%ismw
the formula:

() Vyy=p(v,2)u)x U2

in which p{v,z) is a precisely given function and was first conjpctured by D.
SERRE, vlnleuluﬂuzmpscuvalyopmﬁeonﬁmhonsofvuﬂz\vehdalso

shown that this is the key point to prove the cofvergence SCOS

Namely, either for the"elasticity system or for the nsemroptc s dymmus
equations, (4) enables to show (very simply) a sequence of non positive functions
whose weak limit is non negative: therefore the limit is zero and the convergence is
strong. Moreover,the Young measure is a delta-function, except if the system is
linearly degenerate.

Here, wve show that this information (4) is also crucial to study the linearly
degenerate case, so that, roughly speaking, the picture is the following:

-either the system is linearly degenerate, and then oscillations can just propagate (if

. they already exist in the initial data), but cannot be created

-or the system is not linearly degenerate(e.g. is genuinely nonlinear), and then
possible oscillations in the initial data are immediately “killed” by the entropy

.conditions.




Large Time Step Glimm’s Scheme for Hyperbolic Conservation Laws
Wang Jinghua

Institute of Systems Science
Academia Sinica
Beijing
Thina

We are concerned with systems of conservation laws of the form

(1) u+ f(u)e =0 ~c0<z<00 , t>0

with initial condition

(2) u(z,0) = uo(z)

Here u(z,t) = (u!(z,t),...,u™(z,t)) and f(u(z,t)) = (f1(u(z,1)),. .., f™(u(z,t))) is a smooth
mapping from a region 2 of R™ to R™. We assume that the system (1) is strictly hyperbolic,
i.e. the matrix gf has real and distinct eigenvalues.

Solution to I.V.P. (1), (2) may develop discontinuities even when the initial data are smooth.
Therefore we seek weak solutions to LV.P. (1), (2), i.e., solutions u(z,t) which satisfy

/ooo /_: (u® + f(u)®)dzdt + /_: uo(z)®(z,0)dz = 0

for all C! test functions &(z,t), vanishing for |z| + ¢ large.

Glimm'’s scheme, introduced in his celebrated paper {1}, is an effective method for calculating
discontinous solutions of systems of conservation laws. The main advantages of the scheme
for numerical calculation is the sharp resolution of discontinuities and absence of over- and
undershoots. A drawback of the scheme is to solve many Riemann problems. This is a time
consuming procedure. Motivated by Le Veque’s work [3], we introduce two types of large time
step generalization of Glimm’s scheme, [4], by linear superposition of conserved quantities and
corresponding Riemann invariants respectively. Here we give a description of first one as follows.

We discretize R x (0,00) by spatial mesh length § and time mesh length 7 and allowing the
Courant number ¢ to be arbitrary (fixed) constant, i.e.,

r
-5‘1\|=C_<_N

where |A| is the maximum wave speed. Then for a random sequenze {a;} in [0,1) , assuming
that u(z,t,§), approximate solution to I.V.P. (1), (2) has been determined for ¢t < t, = nr, then
we define u(z,t,,6) = upn = u(Zx + @nbts — 6) for z € It = [Tk, Zr41), where z, = ké. Let
g n(z,t) be solution of Riemann problem

(1)

Ug-in , T< Tk
u(z",tn) - {uk,n , T> T




We set u(z,t,8) in the stripe S, = {(z,t), tn <t <tp41} 2s

(3) u(z,1,8) = u(z,tn,6) + Y _ (vi(2,1) — ui(z,ta)) , (2,1) € Sn
i

The above procedure may proceed for all ¢ > 0 provided we have suitable bound on u(z,t, §).
To initiate the scheme, at n = 0, we set

u(2,0,6) = uo(z)

These are at most 2N non-zero terms in the sum of right hand side of (3). In particular this
large time generalization of Glimm's scheme, abbreviated as L.T.S. Glimm’s scheme, reduces to
Glimm’s scheme when ¢ < 1/2.

We prove [4], the consistency of the L.T.S. Glimm’s scheme, i.e., assume that each choice
of the random sequence {a;} yield a family {u(z,¢,8), 0 < § < 8o} of approximate solution
which are defined for ¢t > 0 and T.V. u(-,t,8) are uniformly bounded in § and t. Then there
exists a sequence § — 0 such that

u(z,t,8) — u(z,t) , § 0

and u(z,t,4) is the weak solution to LV.P. (1), (2).

. We also prove in [4] that the L.T.S. Glimm’s scheme is total variation diminishing for scalar
conservation laws. Therefore by consistency of the scheme it follows that the weak solution to
LV.P. (1), (2) can be obtained as limit of sequence of the approximate solution u(z,t,§) for
almost all choices of random sequence {a;} as the mesh is refined.

In (4], for general systems, if we assume the system is genuinely nonlinear and T.V. ug(-)
is sufficiently small, then T.V. u(-,t,6) is bounded uniformly in § and ¢ > 0. Thus the weak
solution to I.V.P (1), (2) also can be obtained by L.T.S. Glimm’s scheme. This means that the
main theorem in Glimm’s work [1] remains true for L.T.S. Glimm’s scheme.

Harten and Lax [2] modify Glimm’s scheme by replacing the exact solution of Riemann
problem with an appropriate finite difference approximation and by building approximate so-
lutions on a moving grid. Their modification is computationally more efficient and easier to
extend to more general situations. In [5], we extend the random choice finite difference scheme
by Harten and Lax to a large time step version and we prove the consistency of the scheme and
the scheme is total variation diminishing for scalar conservation laws. We also make study on
entropy condition for it.
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Summary

Today the most accurate and cost effective industrial codes used for
aircraft design are based on full potential equations coupled with
boundary layer equations. But these are not capable to solve compli-
cated three-dimensional problems of vortical flows and shocks. On the
other hand Euler and Navier-Stokes codes are too expensive and not
sufficiently accurate for design purposes, especially towards drag and
interference prediction. The reasons for these deficiencies are
investigated and a way to overcome them by future developments is

demonstrated.
Nomenclature
a speed of sound pressure

special gas constant
specific entropy

time

temperature

space-time velocity, stat. = v
space velocity

normal comp. of velocity
tangential comp. of velocity
control volume

ratio of specific heats
Riemann invariant

density

stagnation speed of sound
dA element of surface gV
div,. div in plane normal to p
Dy- wave operator at Mach cone
D,. wave operator at path line

13 substantial derivative

oV surface of V

specific inner energy

flux

specific stagnation enthalpy
space-time like normal vector
space 1ike part of p*

® > <L<§z<z<*—n-nn ~o

= P*o’l'ﬂ o

Deficiencies of Modern Numerical Methods

In the field of aerodynamic design of modern aircraft, especially transonic
transport aircraft, numerical methods became one of the most important
design tools. The mayority of the codes used nowadays heavily relies on the
experience with the elliptic subsonic potential equation. To enable the
solution of transonic problems with supersonic pockets the necessary
numerical conditions for hyperbolic flows were introduced. And yet today the
most accurate codes for drag prediction are full potential codes coupled
with a boundary layer method. Especially at the points indicated in Fig. 1
the viscous effects strongly influence the solution: shock/boundary layer
interaction, rear loaded profiles, transonic wakes. An H-type grid enables
an accurate coupling of the inviscid and viscous solution including the wake
and an easy capture of normal shocks [3].

* Department of Theoretical Aerodynamics
MBB-UT, TE 212, Hunefeldstr. 1-5, D-2800 Bremen 1 1/12




Fig. 1: Transonic airfoil calculation

These codes are restricted to two-dimensional or at Tleast nearly
two-dimensional flow problems because they cannot capture the typical
three-dimensional effects shown in Fig. 2: unknown three-dimensional shocks,
free vortices, wake interferencies, nacelle and jet interferencies,
rotational flow fields.

Eig. 2: Severe 3D-problems for transport aircraft

For aircraft of small aspect ratio (Fig. 3) the old methods are completely
insufficient: the flow field is dominated by vortex systems; at higher Mach
numbers the strong entropy gradients do not allow a potential approximation.

2/12
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Fig. 3: Severe 3D-problems for reentry vehicle

On the other hand there exist a 1ot of Euler and Navier-Stokes (NS) codes
which should be able to solve these problems. The following figures show
some typical 3D-results of two modern Euler codes representing the state of
the art. Fig. 4 shows total pressure losses on a midwing airfoil.

0.06

0.04
1

0.02

0.00

i

0.2 OAj
‘o._o...g..e...-Q,_ ::'X/C

PTOT-REL

-0.02

Eig. 4; Total pressure loss on midwing airfoil
(Solutions of two different 3D Euler codes)

‘ : Due to smearing and wiggles shock location and strength cannot be determined
: accurately. At the leading edge spurious pressure raises resp. entropy
: losses and other numerical errors occur; the trailing edge solution shows
) similar errors.
Inviscid wave and induced drag has to be determined by integration in the
direction perpendicular to the free stream.
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3D-EULER  MACH= 0.7800  ALPHA= 2.2400

Eig. 5: Inviscid drag by pressure integration
(Solutions of two different 3D Euler codes)

Inviscid drag is given as the small difference of the large areas enclosed
by the pressure curves; errors mainly result from the wrong pressure
computation at leading and trailing edges.

Another possibility of inviscid drag calculation is to calculate wave drag
by entropy rise at the shock and induced drag in the Treffz plane. This
method requires accurate shock determination and vorticity transport (Fig.
6, 7); both are not sufficiently guaranteed by current codes.
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Total pressure loss, streamwise direction
(3D Euler solution)
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Eig, 7; Absolute value of vorticity, streamwise direction,
(3D Euler solution)

Other very important problems to be solved are the interferencies caused by
vortex systems. Euler and NS solvers should be able to capture this problem.

WS, N s
IR e

Fig, 8; Total pressure loss, wake behind wing
(3D Euler solution)

\

R
. A";\ 3 -
\\\\“ »\‘E—_’Qﬂ" e e

Fig. 9: Absolute value of vorticity, wake behind wing,

(3D Euler solution)
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Figs. 8/9 should show only the inviscid wake of an Euler solution. Partly
vorticity occurs at the physically known places. But obviously, additional
vorticity is generated by grid properties, is smeared out, and in the
downstream direction the vorticity content [2] diminishes rapidly. So these
codes are not yet helpful to solve this problem with the accuracy needed for

aircraft design.

Looking at computing costs the Euler (and NS) codes are surprisingly
expensive: This is mainly due to the fact that today’s Euler codes need grid
sizes comparable to those used with full potential codes. But to get the
requested solution values (e.g. velocity or pressure) the potential function

has to be differentiated numerically with one order loss of accuray. In
Euler equations, the requested values are directly obtained as solutions and
therefore a much coarser mesh should give the same accuracy as for potential
flow models. Moreover - because of the necessary degree of continuity -
additional difficulties should be expected for full potential solvers in
regions of strongly varying solutions. Therefore important accuracy and cost
improvements of future Euler (and NS) codes can be expected.

The examples demonstrated here are Euler solutions. Real flow is viscous; so
some people think that the difficulties will be overcome by the solution of
the NS equations. But since the errors shown above are errors of the
solution method rather than the Euler equations, they will not be overcome
by using other equations but by other algorithms. Especially for high
Reynolds number flows the Euler terms remain very important in the NS
equations; they completely describe the outer flow field away from body
surfaces or wakes. So a NS solution will only be possible with an accurate
solution of the intrinsic Euler part. And as the important hyperbolic part
of the flow equations are the Euler equations, their numerical solution by
field methods will be discussed here.

It is well known, that the errors in numerical solutions are generated by
numerical smearing, amplification and artificial damping, but it is diffi-
cult to localize the hidden sources of these effects. We will try to identi-
fy some of them and to show possibilities to overcome them. The presented
facts are all known, but not yet respected in many numerical methods.

The construction of numerical field methods is done in five steps:

- Selection and analysis of the governing equations,

- Selection of a point distribution or grid to represent the flow field,
- Approximation of solution values between grid points,

- Formulation of the boundary conditions defining the special problem,

- Mathematical solution algorithm.

In the next sections only the first three points are discussed for the Euler
equations as an example of systems of nonlinear hyperbolic equations.

Governing Equations

The well known Euler equations are
¢’ g§+gdiv1-§f-+div(gy,)-o
W R+ gradp - @ (1)
E g%ﬁ} +pdivy = ¢ %ﬁ? . %} %f- =T %f— = 0

6/12
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They have to be complemented by two equations describing the state of the
gas.

A system of hyperbolic differential equations has a set of real directions
with undefined derivatives. For the Euler equations (1) these directions are
all the directions p* normal to the path 1ines and the directions normal to
the Mach cone defineﬁ by the characteristic direction conditions

for the path line: yen* « 0,
(2)
for the Mach cone: ven* = -a.

A11 solutions of hyperbolic systems, except the trivial ones, are defined by
Jumps of (sometimes higher order) derivatives. The possible discontinuities
in the shock free region are (depending on the selected set of dependant
variables) e.g.

across the path line: variables S, 9, T, &, (hy)y ¥y )
across the Mach cone: 1. derivatives of p, (v-n) .
In special cases the dependant variables themselves are discontinuous:
across wakes: all variables except Py %>
(wakes consist of path lines) )
4

across shocks: all variables except Ye

The path 1ine and wake discontinuities are connected with vortices and occur
even in steady subsonic flow.

In contrast to elliptic problems, where the polynomial order of the Taylor
approximation is a quality measure for the discretization, for hyperbolic
problems this 1is only true for regions with very smooth solutions. For the
physically more interesting zones it is important to take care of the
different kinds of discontinuities, because the solution cannot be expanded
into Taylor series.

Corresponding to the directions p* normal to possible jumps there exist the
directions of wave propagation with the associated wave operators

path line y* : Dp. = B¢ :- %‘:+(!-grad). -

h V' . H . = %‘ + n' 3
Mach cone ¥* + a-n Dy n a (n-grad)
The continuous part of the solution is defined by the set of compatibility

conditions of characteristics theory, e.g. (depending on the selected set of
dependant variables)

along path line: E D’ s =0,
h ) - -Ly oradp,
DP g 9 (6)
along Mach cone: D" (y-n) + §15- D"p tadivyy = 0
(div, y : divy taken in the plane normal to p). e
7/12 3
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These conditions are special combinations of the governing equations which
are valid everywhere except across shocks and wakes. But only in the
directions of the corresponding characteristics they describe continuous
wave propagation although continuity is not required for each single term.

Along the path 1line entropy and stagnation enthalpy are convected without
any continuity required in the transverse direction, even for subsonic flow.
For simulation of vortical flows the correct calculation of vorticity trans-
port is very important. It is described indirectly by transport equations
along path lines, because Crocco’s theorem

vxcurly = -Tgrads +grad h, + g—f (7)
defines vorticity by (mainly transverse) differentiation of entropy and
stagnation enthalpy.

Important for numerical schemes is, that the hyperbolic solution is
exclusively defined by derivative jumps across the characteristics and in
certain cases as jumps of the solutions themselves, 1.e. at wakes and shocks
in the Euler equations.

Referring to the corresponding surface integral formulation instead of the
differential equations,

v
Fig. 10;: Finite volume
0

c v = - -n) dA

S geen

d
" | vfa—t(yx) v - 5\'56@3 (v-n) +p nl dA (8)

) v2 v2

£ Jorlster ey - - flgterd- + £)(v 1 oa

it 1is possible to capture all discontinuities within one cell for one-
dimensional problems. The reason is that one can calculate the fluxes of the
unknown solutions instead of the unknown solutfons themselves. But this
normally fails in multidimensional cases because the fluxes are tensors of
one degree higher than the unknowns. For multidimensional problems it is
impossible to get a sufficient number of equations for a direct solution of

8/12
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the unknown fluxes. Therefore the fluxes are computed by integrating over

the boundary where their values have to be calculated from a usual set of

variables. But the values of these variables are only known at distinct

points and not at the whole boundary. This must be overcome by interpolation
assumptions which often are inconsistent with the discontinuities. Therefore

? tcoabination with other techniques is recommended which will be described
ater.

To achieve good numerical properties the selection of unknowns has a strong
influence. For the Euler equations the so-called conservative variables
yield shock capturin? capability to finite difference schemes, but are
normally working well only for one-dimensional cases. For finite volume
schemes based on the boundary integral equations (8) instead of the diffe-
rential equations, it is not necessary to use the conservative variables for
shock capturing. Here the only important condition is, that the equations do
not contain production terms.

Using the conservative variables or primitive variables the set of diffe-
rential equations is strongly coupled. For numerical reasons and for con-
sistency it 1is desirable to decouple the system of equations. This is at
least partly possible by using an different set of varifables. A complete
decoupling is provided by Riemann invariants if they exist; unfortunately
they usually do not exist. But often it is possible to construct a system of
equations with weaker coupling and weaker nonlinearities, using the know-
ledge of Riemann properties of simpler cases. So choosing velocity, speed of
sound and entropy as variables leads to a set of only mildly coupled and
nearly linear compatibility conditions.

along path line: E DP s = 0,
2 q .
-" D - . T d I d ’
%transient) p (F) X[V grad s - o7 grad (a%)]
M Dp (23) = 9_(a?) - (5-1)T 28 .
Ymast staty o) 7 5c@) - G-NT 5 (9)

. 2 ) = -4 -
along Mach cone: Dn (r-l a+yn) iR DM s -adiv v.

Wave transportatfon is described by the wave operators D. The nonlinearity
is restricted to the determination of the differential operator’s characte-
ristic direction and the right hand terms. If we locally combine the wave
variables velocity and speed of sound for each grid plane to plane Riemann
invariants [6], as proposed by Moretti [4],

A = Faswn. op - -p (10)

we get the weakest possible coupling of the compatibility equations. As well
known, for isentropic plane waves the equations are completely decoupled.
This set, however, has no shock capturing capability.

Selection of Representative Points

In most numerical field methods the solution field is represented by a
distinct number of grid points. Between the grid points the solution values
are distributed by some kind of interpolation. Normally these interpolation
functions are defined locally, changing definition at grid lines. Therefore
grid lines introduce numerical discontinuities in the derivatives.

9/12




6rid lines

11

1L
L1

Eig. 11: Numerical grid

To obtain the best possible results the discontinuities generated by grid
lines should coincide with the physical discontinuities, or at least with
the most important physical discontinuities. Otherwise at each grid line the
discontinuities will be redistributed and thus numerically dispersed.

For the Euler equations the most important discontinuities are:
At shocks: shocks and path lines,
In nonisentropicy shock-free regions: path lines and characteristics,
especially "main characteristics® (The "main characteristic" is the
downstream characteristic in the plane spanned by the boundary normal
vector and the velocity vector.),
- In the {isentropic region: characteristics, most important the

"main characteristics”,
- Steady subsonic vortex flow: path 1ines which here are stream lines.

It is not easy to fulfill this demand on grid construction, but it is the
only way to get accurate solutions with a restricted number of grid points.

1‘ T i 2 M Wave direction "1"
HITAITT, G722

. ’ ///j Wave direction "2*
vinIi |

Eig. 12: Example of a physically motivated numerical grid
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Most numerical field methods need some kind of solution distribution between
grid points. As mentioned above, piecewise defined functions introduce
numerical discontinuities. These discontinuities are generated along grid
lines. If the grid lines do not coincide with the characteristics, part of
the information transport changes direction from that of the characteristics
to that of the grid line direction due to the redistribution of disconti-
nuities. This produces numerical dispersion.

On the other hand, the interpolation functions often must be continuous
across grid lines especially for difference and higher order schemes. So
continuity 1is introduced numerically whereas physics can be discontinuous.
This smears out solutions, amplifies disturbances and produces the well
known wiggles [5].

Normally the interpolation of the different variables between the grid
points is treated independent from each other, e.g. linear or quadratic for
density, momentum and energy. But the equations are strongly coupled as well
as the physical distributions of values. This becomes more obvious in the
postprocessing, when other values like pressure, entropy or stagnation
pressure are calculated. In the zones of strong gradients or even strongly
varying gradients, the solution is affected by by the inconsistency of the
interpolation. A subsequent computation, especially of sensitive functions
as pressure, entropy or stagnation pressure, amplifies these errors due to
the nonlinear combination of inconsistent values; spurious entropy often
disappearing further downstream is generated. Moreover truncation errors
increase with nonlineari*y and stronger coupling of equations. So it becomes
impossible to accurately calculate wave or induced drag by pressure inte-
gration, because the most important parts are the nose and trailing edge
regions, both with strongly varying gradients producing large errors due to
inconsistency and truncation errors.

Requirements for Numerica] Field Methods

Most numerical schemes stay in the tradition of elliptic solvers or one-
dimensional approximations, which are not compatible with hyperbolic pro-
blems describing three-dimensional wave propagation and the corresponding
discontinuities. An accurate numerical scheme must be properly modelt.
Therefore physical and numerical discontinuities should coincide as much as
possible. The most convenient way is to select characteristic directions for
grid construction, as the Massau construction [6] for two independent and
two dependent variables. But for more than two variables it is necessary to
select the wmwost important directions. These wave and discontinuity lines
transport the main information and the strongest discontinuities. When they
cross over with grid lines, the information must be redistributed; physical
discontinuities are smeared out and new numerical discontinuities are
generated.

From the aircraft designer’s view, a combination with a viscous solution is
absolutely necessary. It 1is facilitated by the selection of grids well
adapted to path or stream lines. To facilitate code construction, stream
line adaption can be used as a construction principle of the code itself

(1].

To achieve accurate solutions the scheme should be of second order in smooth
regions, but at physical discontinuities it should tntroduce as little
numerical smoothness as possible. Therefore interpolation or distribution
functions should be restricted to one mesh or cell surface. Then numerical

11/12

AR e e W wPRmTewaemws - f

§
N
r
!
N




inaccuracies introduced by approximation are not amplified and can be
transported along the grid lines. If the grid 1ines coincide with a wave
propagation direction, all the resp. approximation errors remain confined
within the neighboring grid 1ines, with no further dispersion. A realization
seems possible, for example, with characteristics oriented schemes or node
oriented finite volume schemes using physically motivated grids.

To overcome the difficulties with inconsistent interpolation and truncation
errors, it is possible to use a set of variables better decoupling the
equations. These variable sets normally have no shock capturing capability.
So they can only be used in a nearly converged state to improve accuracy; or
shock fitting must be performed. Another possibility is to use better
interpolation functions, based on local approximations of the flow field,
e.g. based on a 1locally linearized potential solution combined with a
vorticity approximation given by the entropy distribution.

The methods mentioned above will give the possibility of cost effective and
accurate solutions. But programming work will be more arduous, especially
when versatility is to be maintained. At comparable accuracy for Euler codes
.the goal is to achieve

- computing times in the order of full potential codes,

- with coarse grids as known from the method of characteristics.
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‘ The decay of solutions to the equations of nonisentropic hydrodynamic flow
f as t e ‘

, Prof. Hans-Dieter Alber

! Mathematisches Institut A
der Universitét Stuttgart
J Pfaffenwaldring 67

7000 Stuttgart BO

We study the initial value problem for the hydrodynamic equations of

7[- one-dimensional, compressible flow, prove that a global solution exists for
initial values wilh small variation, and use this result to investigate the

asymptotic behaviour of the solution for large times. Our main objective is to

p ' study the decay of the solution to initial values without compact support.

The initial value problem is given by the equations

! (1) ee  + (ev)x =0

(2) (ev)e + (ev¥)x + px = 0
; (3 oG Vit et (ev(;vi+ et o p))x=0

and the initial conditions
(4) e(x,0) = g(x), v(x,0) = v(x), e(x,0) = e(x)

for x ¢« R and t 2 0. e(x,t), v(x,t), e(x,t), respectively, are the density, the

r
. a
R B -

velocity, and the initial energy of the medium at the point x at time t, and
P p = ple,e) is the pressure. We assume that the medium is a polytropic gas,
? that is an ideal gas for which e is simply proportional to the temperature T,

From the equation of stale for an ideal gas we therefore obtain
(5) p = (r1) ee

with a constant v > 1. We nole that the entropy S is given by

SR f'v'«‘vqlﬂ"(r\ﬂl-.:—-u;\ Uy

’ e
1 (6) S(e,v,e) = cy In (;;:7) + S,

with constants c,, S,.

G e

It is well known that global solutions exist to this problem if the variation
of the initial values is sufficiently small. T.P. Liu proved in (2] for the ‘
equations of non-isentropic flow in the representation of Lagrange that a
global solution pxlnln it Lthe varintion of tho inilinl data ia boundod by o/(y-1).
In (4] he studied the asymplotic behaviour of solutions to general
conservation laws including the case where some of the fields are linearly

1
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degenerate, if the initial data are constant on intervals (-e=,a) and (b,=). It is
proved that the genuinly nonlinear fields decay at the rate t=t/2 to the
constant state if the initial data have equal constant values on the intervals
{(-=,a) and (b,=). Moreover, it is8 shown that in the L,;-norm the genuinly
nonlinear fields tend to N-waves. In [3) it is shown that the linearly
degenerate fields converge to a constante state for general initial dala with
sufficiently small variation. Our aim is to derive decay estimates for the
solution if the initial data (E,;,B) with 5 = (7-1)5 e have sufficiently small
variation and satisfy
lim (e(x), v(x), p(x)) = lim (e(x), v(x), P(x)) = (€0, Vo, Po)

X-= X

(7
™((e,v,p) | (-=,-al U fa,=)) $ C &P

for positive constants C,8, and all a > 0. To do this we first use the
difference scheme introduced in [1] to prove the following global existence

result:

Theorem 1: let a compact subset K ¢ R' x R x R* be given such that for all

u; = (@1,Vir€y), Uz = (@2,v2,e2) € K the inequality
vimval ¢ 2GI0)% (e} + e})

holds. Then there exist constants C,,C; > 0 such that to all initial data
u= (g,v,e) : R+ K with

™V(u) € C,

there exists a weak solution u = (g¢,v,e) : Rx R} 2 R* x R x R* of (1) - (5)

satisfying the entropy condition and

TV(u(-,t)) § C; TV(u).

Here the tolal variation is underslood in a generalized sense. A weak

solution u = (e,v,e) is said to satisfy the entropy condition if
¢ (eS(u)) + 3 (evS(u)) 2 0

holds in the distributional sense for the entropy S defined in (6). To prove
this theorem we construct a sequence of approximate solutions to (1) - (5),
which consist out of solutions of Riemann problems, and prove that the total
variation of these approximate solutions is uniformly bounded. Then we can
select a subsequence convergingb'_.o a weak solulion of (1) - (5). By studying
the asymptotic behaviour of the ai:proximate solutions we prove the following

theorem:
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Theorem 2: Let K be defined as in theorem 1. Then to all & > 0 Lthere exist
constants C,,C, > 0 such that to all initial data u = (;,;,;) : R K satis-
fying (7) and TV(G) $ C, there exists a weak solution u(g,v,e) of (1) - (5),
which fulfills the entropy condition and

sup (tv(x,t)-vol + Ip(x,t) —pol) $ q(t,8,¢)
x€R

(8)
TV(v(-,t), p(-,t)) £ q(t;8,¢),
where
- :52*' e ,
C, t » 0¢g s 3
q(t;p,e) = -
c,t **°F , 3cp,

with p(x,t) = (¥-1) e(x,t) e(x,t).

Again, the total variation is meant in a generalized sense. This result
means that the genuinly nonlinear fields in the solution decay with the rate
given in (8). However, the best decay rate we get is t~%*%, which shows that
our estimales are not optimal, because the decay rate for initial data with

compact support is t~%, as we already mentioned above.

References

1. H.D. Alber: Local existence of weak solutions to the quasi-linear wave

equation for large initial values. Math. Z. 190 (1985), 249-276.

2. T.P. Liu: Solutions in the large for the equations of nonisentropic gas
dynamics. Indiana Univ. Math. J. 26 (1977), 147-177.

w

T.P. Liu: Large-time behaviour of solutions of initial and initiai-
boundary value problems of a general system of hyperbolic conservation
laws. Comm. Math. Phys. 55 (1977), 163-177.

4, T.P. Liu: Lipear and nonlinear large-time behaviour of solutions of
general systems of hyperbolic conservation laws. Comm. Pure Appl. Math.
30 (1977), 767-796.




i
&
5
g
4
b

e S AR

A HYFERBOLIC ( GENERALIZED ) FLUID MODEL FOR

RELATIVISTIC ELECTRON BEAMS.

A.M. Anile and S. Pennisi
Dipartimento di Matematica
Citta’ Universitaria
Viale A. Doria 6
95125 Catania (ltaly)

Relativistic intense charged particle beams are of great interest
in several areas of plasma physics and technology (e.q. free-
electron lasers) [11].

A fundamental description of these beams is usually based upon
the V1asov—-Bol tzmann equation. Calculations for specific
situations are then performed by using numerical simulation
techniques. A kinetic approach , however , has some drawbacks .
In particular ., within a kinetic framework , the actual
calculation of equilibrium configurations in an arbitrary
geometry is time consuming and very difficult. Furthermore a
stability analysis of such equilibrium configurations is an
almost impossible task except in very special cases. These
drawbacks could be avoided , at least in part , by adopting a
fluid model . Obviously a fluid model cannot provide an accurate
microscopic description but could be adeguate if one is mainly
interested in the gross fearures of a configuration.

Relativistic fluid models can be constructed by considering the
moment equations arising from the relativistic Vlasov equation
and adopting a suitable closure approximation. For particle beams
the closure approximation must be based on the assumption that
the particle distribution function represents a warm fluid , i.e.
the dispersion of the velocity about the mean is small. Rased on
this approximation models have been proposed by Siambis [21,
Newcomb [3] ,Amendt and Weitzner [4]1 . The latter , according to
our opinion , 1is the most satisfactory because it is fully
covariant and complete (i.e. they provide a minimal set of field
equations). The present work is based on the Amendt and Weitzner
model and we believe that it represents a considerabl:
improvement upon theirs. The Amendt and Weit:zner relativistic
covariant warm fluid model could be improved significantly in two
points. The first point is related to the constraint eqguations
which must be satisfied by the moments and which arise from the
fact that the moments arise from a distributiopn function. In the
Amendt and Weitzner model these constraints are satisfied only
approximately . The second point is that the Amendt and Weitzner
model can be shown to lead to a hyperbolic system but it is not
known whether such a system is equivalent to a symmetric one (for
symmetric hyperbolic systems one has a much more satisfactory
mathematical theory (5] ). .

In this paper we present a fluid model which solves the above
inconveniences of the Amendt and Weitzner one. More precisely ,
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for our model the constraint equations are satisfied exzactly and
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NON-OSCILLATORY SCHEMES FOR
MULTIDIMENSIONAL EULER CALCULATIONS

WITH UNSTRUCTURED MESHES

Paul ARMINJON )
University of Montreal, Dept de Mathematiques et Statistiques,
C.P.6128 Succ.A, Montreal. Quebec(CANADA), H3C3J7
Alain DERVIEUX
Loula FEZOU1
Herve STEVE
INRIA. 2004 Route des Lucioles. Sophia-Antipolis 1 et 2,
06565 VALBONNE (FRANCE)
Bruno STOUFFLET
AMD-BA. DGT-DEA. B.P.300. 78 Quai M.Dassault.
92214 SAINT-CLOUD (FRANCE)

The purpose of the paper is to present a synthesis of a st of recent (essentially unpublished) studies
related to the design of multi-dimensional non-oscillatory schemes, with emphasis on those which apply to
non-structured finite-element simplicial meshes (triangles. tetrahedra). While the direct utilization of 1-D
concepts may produce robust and accurate schemes when applied to non-distorted structured meshes. it
cannot when non-structured triangulations are to he used.

The subject of the paper is to study the adaptation of the so-called TVD methods to the above context.
TVD methods have been derived for the design of hybrid first-order/second-order accurate schemes which
present in simplified cases monotonicity properties (see. for example, the review [1]).

A various co. ‘ction of first-order accurate schemes can be used. they are derived from an artificial
viscosity model or from an approximate Riemann solver.

However. the main feature in the design is the choice of the second-order accurate scheme. this choice
can rely either on central differencing or on upwind differencing.

CENTRAL DIFFERENCING

For central differencing, our work [2] extends S.Davis® approach (see also [8.9]). Two main features will
be discunssed :

-the viscosity model can be uniform. so that the first-order scheme is of Lax-Friedrichs type: we discuss
its method of construction (sce also [4]) : another model can be derived from a flux-splitting : Osher’s
splitting has been used with some success. .

- the construction of symmetric limiters (after [12]): it is geometrically based on segments. i.c. triangle
sides in 2-D. edges in 3-D, joining adjaceut nodes : this enables one to derive conservative schemes. Four
values of a sensor are then to be computed in order to perform a 1-D limiting process : these values are
obtained using a local representation of the flow variables. derived from a previons FEM-MUSCL scheme
introduced in [6].

UPWIND SCHEMES

In the case of upwind differencing. the MUSCL approach of van Leer [11] is adapted : the question
whether the limiting step has to be done separately in cach direction or as a multidimensional device is
studicd more precisely: )

- 1-D limiting bas been used in a scheme involving fully upwind derivatives together with central ones ;
it produced nice results for the simulation of 3-D reentry supersonic flows [10}.

- 2-D limniting proved also to be a very robust approach when limitation is applicd to cach element(not
published).
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ANALYSIS
The communication will involve :
- a theoretical discussion of two scalar linear multidimensional models, namely the advection model :

_—

(1 we + V.yrmlu' = 1),

and the linear conservation law :
(2) w + din(_l_'"m) = 0.

Then a numerical scheme will be declared mouotonicity preserving if it satisfies the Maximum Principle
(case of (1)) or preserves the positiveness of solutious (case of (2)). In the context of triangles. the study is
a sequel of the work done by Baba and Tabata [3): several ways to extend their first-order accurate schemes
to TVD quasi second-order accurate schemes will be presented.

- a presentation of the various Buler schemes .

- a comparison of the schemes with 2-D typical calenlations: a recent GAMM workshop [13] presented
several test cases (airfoil. blunt body flows)that are not easy to caleulate from the point of view of robustness
and/or accuracy. B
- a few 3-D calculations using some among the best schemes presented.

CONCLUSION

Several schientes that we desigued are interesting from the point of view of robustness and accuracy. At
the present time. upwind TVD schemes seem to be more acenrate, hecause the liiters introduce less first-
order accurate numerical viscosity. However. since purely central differencing schemes involve no nnmerical
viscosity, TVD schames relying on these schemes have a chance to perform well in the future, when. for
exanple, they are included in a Navier-Stokes solver.
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Construction of a high shock-resolution upwind scheme ; Mach-8 2-D flow past

a cylinder :

MUSCL-FEM scheme relying on Osher’s splitting and on 2-D element-wise ol

limiters.

MACTI-LINES : MIN = 1.200 MAX = 1.760 DLTA = 0.020

Construction of a high shock-resolition central-differencing scheme ; Mach-8
2-D flow past a cylinder :

a. First-order scheme (Osher’s splitting)
b. TVD scheme, relying on the above scheme and a Richtmyer-Galerkin one.

The shock numerical thickness is in accordance with theoretical predictions.

MACH-L™MES

MIN =« 0250 MAX = 3000 DLTA = 0253

3-D calculation of a flow past a wing (Mach at infinity = 1.3}, priformed by
applying a MUSCL-FEM scheie and a non-structured locally refined tetrahedriza-
tion.




Finite Domain Construction of TVD Schemes

TiMOoTHY J. BARTH
CFD Branch, NASA Ames
M.S. 202A-1
Moflett Field, CA USA 94035

Introduction. The full paper will consider the construction of numerical solutions of the scalar initial-
boundary-value problem (IBVP). The construction of total variation diminishing (TVI)) schemes in periodic
or infinite spatial domains with compact supported data has been considered by several authors in the
literature (see [1},[2],{3].(4]). The construction of these schemes in finite domains has not been addressed.
The proposed paper will discuss the construction of such schemes for the IBVP. The basic ideas parallel
those used in the periodic/infinite domain case. The strategy for the full paper will be: (1) show that IBVP
has an underlying integral constraint which relates solution variations in time aud space, (2) consider this
integral equation on a discrete mesh with appropriate Stieltjes sums (Lthe “TVD" condition), (3) show that
this provides Lax-Richtmyer stability in a maximum norm, (4) construct algebraic criteria for TVI) schemes
using standard arguments of positivity. In the following paragraphs, these ideas will be briefly discussed.

Preliminaries. The model nonlinear hypetbolic equation is given by

(1.0) ue+ f(u)e =0, -L/2<z<L/2, (>0

subject to initial data, u(z,0) = uo(z), and approptiate analytical boundary condition
u(-L/2,t) =g(t) f >0, u(L/2,t)=g(1) f' <.

If uo and g are smooth, then unique local solutions for small time, 0 < t < 7, can be constructed. This
may not be true for all time, i.e. discontinuities may form owing to the nonlincarity of (1.0). Whencver
discontinuities do form, the viscous limit of (1.0) is considered which leads to the well-known Lax shock
condition which provides that characteristics flow into discontinuities. For smooth initial/boundary data and
small time the interior solution remains smooth and can be depicted in the z — ¢ plane by nonintersecting
straight characteristics as shown in fig. 1.
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In the full paper this will be shown to imply that the total variation is conserved in time and space, i.e.
(assuming f' > 0)

L/3 T4at L/2 T4At
ay [ , st T+ 801+ R / e DI+ L st

where [ |du| =+ [du if u increasing/decreasing. This equation clearly shows the balance of inflowing and
outflowing solution variation in the space-time domain. In the event that characteristics intersect, entropy
increases, information is lost and the variation must decrease.

(1.2) /_I; 7 |du(z, T + At)| + /T+M |ldw(L/2,t)] < /I; , |du(z, T)] + /T+M |dw(~L/2,t)| ‘

-

Consider evaluating (1.2) on a discrete lattice of nodal values of the piecewise constant mesh function
u} approximating w(z,t). In this notation, (j,») denote spatial and temporal indices, t = nAt, and 5 =
0,1,2,3,...,7 . Evaluating (1.2) produces the following Stieltjes sums:

J
(1.3s) |u"+‘-u,|+ijA, IS g - W+ ) (A et L F>0
=1 i=1 !

The solution total variation E,!-_-x [A; - yul is usually denoted by T'V(u) and (1.3a) is rewritten
(1.3b) 3 — w31+ TV(6™+) < |ug* - 3] + TV (e")

In the full paper, this equation will be shown to have the correct discrete extrema properties and provides
a criteria for constructing discrete boundary schemes. For simplicity, in the next section stability will be

demonstrated for the left quarter plane problem (f' > 0). This avoids complications present due to the
possibility of extrema introduced because of time varying inflow conditions which will be considered in the

full paper.

Stability Considerations. If an interior scheme and boundary condlition valid in the left quarter plane
satisfy

(14) TV(u+) + Juf+ - ¥ | < TV(uY)

then the scheme is stable in the following maximum norm
(1.8) W=l +TV()

The resulting norm is identical to the periodic domain result. However consistency with the conservation
law is used in the periodic domain proof. This bounds the arithmetic mean value of the solution (a constant
dependant on the initial data). Here we have no such estimaté and the balance is more delicate. Begin by
rewriting (1.4) in terms of its original variation and boundary terms.

(16) TV(s"*) < TV(") - [ ! - | < TV(s®) - Z hg* - w3

Also note that the total variation of a fanction must be greater than the difference between the maximum
and minimum of the function in absolute value.

> U

(1.7a) TV(s) 2 max(lu;]) — min(ju;]) = llufleo ~ min(lu;1)
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Combining and rearranging these two results

N
(1.7b) ¥4 e < TV(0) = 37 I3 - w31+ min(lul+1])

n=0
Using some elementary equalities/inequalities, we can bound the maximum norm by the original variation
and maximum norm.

N
" oo < TV(W®) = 3+ = w3+ min(luf' 1)

n=0

N
STV(®) = Y Juf*t — ud] + u)

n=0
N N
STV(O) = Y [t — wi+ ) (st — ful) + JulS
n=0, n=0
N N
STV(®) = 3 1u5*t — w3l 4 3 5t = wfl 4wl
n=0 n=0

STV(®) + |ulf < TV(u®) + |ufle
With some final manipulations, a uniform norm is obtained
lu¥* e + TV (M) < TV() + [0l FTV(uMY)
< 2TV (1) + [[9°]le

<2(TV () + |[ulo |
M+ < 2f|u)

TVD criteria: The development of suflicient conditions for constructing numerical schemes satisfying (1.3)
parallels that developed for the periodic/infinite domain case. A simple example would again be the left
quarter plane problem (f’ > 0). For fully upwind schemes, the updating procedure for outflow boundarics
is trivial since the interior scheme can be applied upto and including the outflowing boundary. For upwind
biased schemes, this is not true and special boundaty condition procedures are required.

Consider an explicit scheme in conservative form

At
n+l n n —_
(1-8) vj —vj +—;(h;+* - ,1-})"0

where the numerical flux h could be a function of (p — r + 1) grid points, b = h(wj_,,...,%;, ...1j4,). In
Harten's analysis, (1.8) is put in the form

+1 + -
(1.9) V; —V;+Cj+§AJ_+§v" -Cj-§Alj";vﬂ

and shown to be TVD if
ct>o0
(1-c--chH) >0

To illustrate the basic ideas in constructing sufficient conditions for (1.4), we consider a simple 3-point
numerical boundary scheme

(1.10) uf,“"‘=v’,‘—u,_§A,_*v“+u,_§A, 4"
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This equation could represent a fully upwind form of (1.9) as well as various forms of space-time extrapola-
tions depending on the choice of coeflicients. Equation (1.10) is rewajéten in the form

vy_3Aj . v
(1.11) Gt =0 -y (1 - —

.. R ; - 3
vy_3a;. *v")AJ_*v =% D"lA”*'
To find sufficient conditions for satisfying (1.4), we follow the technique used in the periodic/infinite
domain case. First construct an interior equation for the evolution of spatial increments in ».

(1.12a) Baj_yontt =C},

with boundary equation .

(1.12b) A]_’V“"-l = (1 - C"' - D-)]_*AJ_*V' + C;','iAJ-*"

Summing over the.domain, applying the triangle inequality and tequiﬁn; the coeflicients of (1.12a-b) to be
positive, we obtain

(1.13) TV(u**') + D;_ i|A 1Pt S TV(s™)

subject to

c* 20, (1-C*~-C7);_y20for §#7

‘..
and
(1-c*-D7); 320

Imposing the additional condition that D; 73 2 0, we have from (1.14)
W3+ = o31= D;_18,_45"

and equation (1.4) is satisfied
TV(o*+) + o3+ — o3| < TV(v")

which is the desired result.
The full paper will expand on these topics and discuss the consttuvhon of numerjcal schemes with slope
limiters.
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The recent appearance of the flux-splitting method [1] |2] used in solving the hyperbolic
system of conservation laws Uy + F(u), = 0 has permitted the setting up of a class of flux-
splitting explicit second-order finite difference Jrg schemes that depends on the single
parameter a. These schemes are stable up to CFL = 2. The equivalent third-order system
(ETOS) of this family has been obtained and the “optimal” valuc of @ (a = 2.5), that
minimizes the amplitude of the peaks of the numerical solution ncar the shock, has been
determined by using the numerical tests of shock-tube flow and moving shock in 1-D space
[3]. The STEGER-WARMING splitting allows one to study the ETOS such as the ETOS
associated with upwing schemes Jy and downwind schemes Jp defined in [4]. This study
shows that the scheme Jrs with a = 2.5 (noted Jrs®F T) is in fact more dissipative than
with @ = 1 in the case of a compression wave or a shock. The scheme Jpg with this
last value corresponds to the STEGER-WARMING scheme used in 1. When van LEER
flux splitting is used, the study of the ETOS appears more difficult because the jacobian
matrices associated with the total flux and the partial fluxes have not the same eigenvalues
and in this case the method taken into account above cannot be applied. Nevertheless, the
{ ETOS has been studied for the one-dimensional isothermal low and some interesting results
concerning the dispersive and dissipative properties of Jrg schemes were brought to light.

In this paper, the Jrs schemes are joined to a family of flux-splitting. The partial
fluxes F+ and F~ of this family are defined by the following two essential conditions:
1 (a.) F=F + + F-

: (b) All eigenvalues of dF*/dU must be > 0
All eigenvalues of dF~ /dU must be <0

‘, and by four other conditions that define the class of flux-splitting that depends on the single
§ parameter €: '
(c) F* and F~ must be continous y
1 with F+ = F for the Mach number M > 1 !
1 ' . F = F for the Mach number M < -1 :
(d) %— must be continous everywhere only for M = 0 where it can be discontinous

(e) -‘-57*- must have one eigenvalue that vanishes for |M| < 1
(f) F* must be a polynomial in M with the lowest possible dcgree.
Some van LEER conditions are taken up again (see [2]) and soine other conditions are
rewritten. In particular, we no longer suppose that dF'*/dU must be continous for M =0
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or that all components of F* and F~ must mimic the symmetry of the components of F
with respect to M. Van LEER has already shown the merit of the continuity of dF*/dU
for M = 41 at many times. But when the Mach number becomes small (< 0.5), van
LEER splitting does not always represent the “optimal” decomposition. Respecting these
conditions, we have sought to define the flux splitting with the greatest number of worthwhile
properties (in particular near the sonic point) and which slso gives a better representation
of the numerical solution than van LEER or STEGER and WARMING splitting when the
Mach number vanishes. To satisfy the conditions (a), (c), (d), (e) and (f), we have retained
the following decomposition when the one-dimensional Euler equations are considered:

when 0 S M < 1

Ff =-&(1+€&)}(M-1)? . Ft =F - F] = pcM — F;
(B =R 0-0M ) (B =RoF o =pd(M ) -
iy =sd=n7F Ff=F-F =52+ - )M - F
when ~1< M <0 _
Ff =&(1+e)(M+1)?
@ { B =473 F 2 - (- 1M
B =¥ () 5 wd F=R-F (i=123)

In these expressions, c, p and 4 represent the sound speed, the density and the specific
heat-ratio. It is difficult to show that the condition (b) is respected for the Euler equations
because of the complexity of the calculations. Nevertheless, in the case of the isothermal
flow (4 = 1), it is possible to demonstrate that this condition is respected for 0 < ¢ < 5/3. It
is thought that this result can be extended to the case y = 1.4. When € = 0, the parametric
flux splitting degenerates to van LEER splitting. The evolution of the eigenvalues is drawn
on fig. 1 for 4 = 1 and € = 0.2. The figures 2, 3 and 4 show the evolution of the components
of F, F* and F~ with STEGER-WARMING and van LEER decompositions and with the
parametric splitting (¢ = 0.2).

It is relatively rare to have a Mach number that reaches the values -1 and 1 in a
flow. Generally, we have a main flow where 0 < M < M,yp (M,yp can be greater than
1) with or without some secondary flows where the Mach number is limited in the lower

 values by Miy¢ such as —1 < Mint. So, in a great number of applications, it is not useful

to impose the condition of continuity of dF%/dU for M = —1. We can replace it by
a condition of continuity of the same functions at M = 0 (in this case dF*/dU will be
continous everywhere). We have carried out that by using only the flux splitting (1) (1’) for
Mint < M £ 1. The retained decomposition (1) (1°) for the problems presented below must
verify the following cenditions:

for Mipt < M < o0

() F=Ft 4+ F-

(b’) All eigenvalues of dF*/dU must be > 0

All eigenvalues of dF'~/dU must be < 0
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(c’) F* and F~ must be continous
with F* = F for the Mach number M > 1
(d’) dF*/dU must be continuous everywhere
(¢’) dF*/dU must have one eigenvalue that vanishes for M < 1
(f) F% must be a polynomial in M with the lowest possible degree.
The new decomposition (1) (1’) has been applied to shock-tube problem and compared
with other methods:
a=1 =0 (STEGER WARMING scheme with van LEER splitting)
a=25 €=0 (Jp% scheme with van LEER splitting)
a=25 =03 (CFL=1)
or €=0.2 (CFL =1.6) (J2% scheme with parametric splitting).

The pressure ratio that is equal tc 13.5 makes it possible to have a Mach number
varying between 0 and 1.14 and thus to test the new method in the case of a supersonic
zone included in subsonic zones with different acoustic phenomena (expansion wave, contact
discontinuity and shock wave). The figures 5 and 6 present the evolution of the pressure and
the Mach number with respectively CFL = 1 and CFL = 1.6. The comparison between the
fig. 5a and 5b of fig. 6a and 6b shows that the J ;’g scheme reduced the spikes at the shock
appreciably. The solution is still improved whene = 0.3 (CFL = 1)ore = 0.2 (CFL = 1.6),
especially in the region where the Mach number is weak (in front of the expansion wave
and the shock) (see figs. 5¢ and 6¢). The flux splitting method creates a discontinuity in
the expansion wave at the sonic point. This phenomenon does not appear in the contact
discontinuity that is spread out on five points.

We have also studied the shock-tube problem with a pressure ratio equal to 2.8 [5). This -
case permits to have a contact discontinuity that moves more slowly and a Mach number
that remains relatively weak (0 < M < 0.4). The numerical solution is presented in fig. 1
with CFL = 1. like in the previous problem, on one hand the solution is improved near
the shock when a = 2.5 (figs. 7a and 7b) because the scheme Jrg is more dissipative with
this value. But on the other hand the solution of the expansion wave is lightly damaged for
the opposite reason: when we adapt the value of a to have a more dissipative scheme for
u; < 0, automatically the scheme becomes more antidissipative when u; > 0. In the present
case, we solve this problem by using the couple of parameters (a,€). The value of the first
paraméter a is adjusted to have a good solution when u, < 0 (shock or compression wave)
and the second parameter ¢ permits to have a correct representation of the expansion wave
(fig. 7c). The contact discontinuity is not affected by the lifferent treatments and spreads
out on five points.

The conjoining of J ;‘;‘ scheme with parametric flux-splitting has been applied to 2-D
flows too. A 2-D steady flow inside a nozzle has been studied and the result obtained with
different values of € are compared. Like in [6], some problems appear near the wall with
€ = 0, in particular strong oscillations of the numerical solution arise on the wall and the
computation diverges rapidly. This is probably due to the strong gradient of the partial
fluxes near the wall that are in this instance, sensitive to the different numerical treatments
applied to the boundary mesh point and the following mesh points close to the wall. If the
value of ¢ is adjusted so that the gradients become weaker, these problems are eliminated
and the numerical solution becomes correct (fig. 8). This computation was realized for
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CFL = 2, with a grid of 131 points over 21 points, and without artificial vscosity since
the present method does not require the adjunction of such treatment. A 2-D flow past a
biconvex profile in a channel with unsteady inlet conditions (sinusoidal pulsation of total
pressure and total enthalpy) has been also studied. A movie has been made. This example

makes it possible to see that this method is capable of understanding complex acoustic
phenomena.
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Fig. 1 - Eigenvalues of partial
flux derivatives y =1
€=0,2

Fig. 3 ~ Evolution of F2* apnd Fa-
(1) van LEER
(2) with parametrization ( € = 0,2)

11

E

Fig. 2 - Evolution of Fy* and F:-
(1) Steger-Varming
{2) van LEER
(3) flux-splitting with
parametrization ( € = 0,2)

4
3
2J
0N, ~Fs
-1 0 "M
-., ’
Fig. 4 - Evolution of Fs* and Fs-
-2 (1) Steger Waraing
(2) van LEER
-3 (3) with parametrization ¢ = 0,2
-4

17

— T -




$u33137ds xny3 or3Ie@eINd + P40
12700 ® Uy AOTj) AD®IIS - g B3

TTo

o

€1 ST1 €41 40 000 620 o0E"TO
Fo &L

1 = ") §'Cl =dy wa1qo3d aqn1 wdoys - ¢ B3

TR N4V 73 8 ) L g'1 = 0 £ ¢l =97 we1903d 2qn3 Fydoys - ¢ 813

u'.— [t . 1'4 20t 960 P00 L0090 8¥0 L0 $T0

T wir 3c ser amtoesd apal wiows - | C8%:

o
L
ws.o
880 O=?
_ i) rets
| e €42 emessuid
L 00~
-lI’-l).I.\I " ‘
bsi°t
(orqur .0 120
) ‘I/-\
S / osct
.-o....«um.w.s. W .-_ azes
Tl ‘

”..o —_— L




;

Y AN T T T " - BN e - e e e e e

Compution of Inviscid Vortical Flows in I?iston Engines

B. Binninger, H. Henke, N. Hiinel

Aerodynamisches Ins.titut, RWIH Aachen

Two- and three-dimensional vortical flow in a cylinder of a piston engine is

investigated by means of a finite-difference solution of the Euler equations.

The flow in a cylinder of a piston engine is characterized by complex vortical
structures of large and small scales, resulting in turbulent behaviour in the shear
layers. Therefore all the attempts to predict such flows have to rely on simplifying

assumptions. A survey of such investigations is recently given by Heywood /1/.

In the present investigation interest is focused on the formation and development
of large-scale vortices during the intake and compression stroke. The vortex
structures are either generated by the jet-like flow when the air enters the
cylinder, or by the shape of the piston. As far as the formation of the large vortices
are concerned friction can be neglected and a descriplion of the flow can be given

by the Euler equations for compressible, time-dependent flow.

For the solution, the Euler equations are formulated for contour-fitted curvilinear,

time-dependent coordinates

E=t(x,y,2t), n=7nxyz5t), T=t1(x,y,zt), 1=t
The equations then read
GT +F§ +6n +IT|; = 0.

In order to be able to compare with flow visualization studies through Mach-
Zehnder interferometry and similar techniques, calculations were performed for
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plane flow. Furthermore the investigations include axisymmetric and more recently

three dimensional flows.

Spatial discretization was carried out with central differences. Artificial damping
was introduced to suppress the high-frequency error components. The central
differencing was chosen, because it seems to be better suited for the present low
Mach number flows, than an upwind scheme as used in /2/. The Mach number is of
the order of 0.1.

For the integl;ation in time two time-consistent solution methods are used, namely
the implicit factorized scheme of Beam and Warming /3/ with first order accuracy
in time, and the explicit five-step Runge-Kutta schenie with second order accuracy

in time for nonlinear equations /4/.

The difference of the two solutions will be discussed in the paper. Numerical
experiments carried out in the frame of this investigation show the behaviour of
the solution in the vicinity of tangential discontinuities which, as a part of the flow
problem, are formed by the incoming jet flow during the early phase of the intake

stroke.

The spatial and temporal development of the vortices in the cylinder as obtained by
the solution will be demonstrated for the intake strokec and the compression stroke

for several conditions.

The computational results are compared with experiiental results obtained from
Mach-Zehnder interferometry. Figure 1 shows computed lines of constant density

with the corresponding interferograms for plane flow at different crank angles.

/1/ J. B. Heywood: Fluid Motion Within the Cylinder of Internal Combustion
Engines - The Freeman Scholar Lecture, Journal of Fluids Engineering, March
1987, Vol. 109/3.

/2] W. Schréder, D. Hinel: An Unfactored Implicit Scheme with Multigrid
Acceleration for the Solution of the Navier-Stokes Equations, Computers &
Fluids, Vol. 15, No. 3, pp. 313-336, 1987.

/3/ R. Beam, R. F. Warming: An Implicit Finite-Difference Algorithm for Hyper-
bolic Systems in Conservation-Law-Form, Journal of Comp. Physics, Sept.
1976, vol. 22, pp. 87-110.

/4/ A. Jameson, W. Schmidt, E. Turkel: Numerical Solution of the Euler Equations

by Finite Volume Methods Using Runge-Kutta Tiine-Stepping Schemes, AIAA-
Paper 81-1259, 1981,
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52° crank angle

84° crank angle

Fig. 1. Comparison of computed vortex pattern with experimental results obtained in the
compressible flow of a two-dimensional madel of a piston engine.
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COMPUTATION OF AXISYMMETRIC WAVE PROCESSES IN
VISCOPLASTIC SOLIDS WITH CURVED BOUNDARIES

C.D.Bisbos
Lehr- und Forschungsgebiet Mechanik, Templergraben 64
R.W.T.H. Aachen, D-51 Aachen, FRG

Some metals of technical interest, exhibiting nonlinear behaviour, can be
modelled through an elasic/viscoplastic material law, within the small defor-
mation theory, as the laws of PERZYNA(/1/./2/) and BODNER-PARTOM
(737.7/4/) on the basis of the von MISES hypothesis.This paper presents a
computational method for the numerical integration of the semilinear hyper-
bolic system of partial differential equations, which governs the propagation
of axisymmetric acceleration waves in these materials ( three independent
variables :two space variables r,z and the time t).

The presented technigue is based on the method of bicharacteristics and
includes weigthed finite difference schemes for the various point types to
treat irregular meshes (Fig.1). At every time step are imposed two boundary
conditions as functions of the arc length of the boundary curve (Fig.2).The
derivatives of these functions with respect to the arc length can be consid-
ered as given data of the problem. Through differcntiation of the equations,
connecting the boundary tractions(resp. velocities) with the stress tensor
(resp.the velocity components along the coordinate axes),two new equations
for the boundary schemes are obtained.This way the boundary curvature x
is directly incorporated in the solution.FORSTEIt has proposed a similar
idea for hyperbolic flow problems{(/5/).

Denoting by V. the velocities, by 0i,Ey the stress ind strain tensor and by
Si,€4 the related deviators we have the following system of partial
differential equations :

p\'/r = Orryr = Orzz ~ (Grr - Oww)/r =0
p\'h = Orzr = Oz22 ~ Gre/T =0
Ow - (2u+3) e =0
(1/2{1)811 -8y - (Y/?)F(Jz)Su =0
with:
Jo = “/2)5;,&]
=t/ & Fo=({l/e -]
F(J2) = FiF2 for the BODNER-PARTOM material
F(J2) = Fi(F2) “for the PERZYNA material

{AD> =max (A, 0).
P, )\, i, Y, N, 0, are material constants.A comma between subcripts denotes
partial differentiation with respect to the following subcript variable and a
dot denotes partial diffentiation with respect to time.
Using the velocity-strain compatibility relations to eliminate the strains we
obtain the governing system in the form:
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Llu)=A v + A us +Auatblu) = 0 .
with unknown functions u :

u?= { Ve, Ve, 0“/3 (Orr‘Ou)/z (0rr"20wv+0u)/6 Orx}
i.e. the two velocities,the trace of the stress tensor and the components of
the stress deviator, The matrices A A A are constant and symmetric and
A is positive definite.Since only the last three components of b(u) are non-
linear functions of the last three components of u, the system is partly linear
and partly nonlinear. This fact is used later in thve numerical schemes to
reduce the number of iterations needed. The rcondition of characteristic
surfaces : ®(r,z,t)=const.

6.2(®,2-c,*(.2+0,:2))(d.2-c2(D,2+9,7) = 0
e = (M2u)/p, ¢ = /e
and the corresponding MONGE cones (/6/,/7/,/2/.Fig.3a) are derived
from : det(A) O A ¢1A| +¢ rAr + ,1AZ
The left eigenvectors of A yield the compattbnllty equations, which involve
derivatives along bicharacteristics and cross-derivatives in the characteristic

surface elements: : ;
"L{w)=0, I'A=0

By TAYLOR expansion and integration of a) the co‘rr\patibility equations along
the bicharacteristics and b) the equations of motion along the pathline,
difference equations of second order accuracy are obtained for computing
the solution at each mesh point at time t=t, from data in the dependency
region of the point at time t, -At. The data on the basis perimeters of the
MONGE cones are determined from corresponding second order interpolation
functions over the points belonging to the convex hull of the dependency
region (CFL criterion).The coefficients of the interpolation functions are
obtained through a local weigthed least-squares procedure. The weight of
each point is related to its mass and to its distance from a circle, whose

‘area is equal to the middie value of the base areas of the P- and the T- cones

(Fig.3b). The final finite difference system has the form:

00 oL Con ! f u' = U‘.l_l'}
10 %u (:,_uc : l_ll! = d ur= lhl u: U3}
Uno Cm guu*[_‘!(q,,)J Q“l U "={us, us, us}

where f collects spatial derivatives of U at time t Cu are constant matrices
and N a 3x3 matrix nonlinearly depending on the deviator components U
Eliminatlng fand separating the linear part from the nonlinear one we obtaln

( g : constant matrix)

u.=h +Gu,
Hlg)u,

The last system is iteratively solved for U, by a NEWTON-RAPHSON
procedure and then the first equation yields U . The bicharacteristics used
for an inner point are shown in Fig.3.c.

For boundary points a part of the bicharacteristics set is replaced by the
boundary conditions and two of the following relations,selected according to

|=‘

N (}i . nonconstant matrix)

?3
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the boundary condition type (derivatives d/ds are boundary data),
for boundary tractions S u ( normal), S ; ( tangential):

(dSw/ds) - 2% S1=0.5(6rr +622) s SINW+0.5 (6er - 022) . SiNBCOS 20
= 0.5(6vr +022) 205 0+0.5 (0rr = 022) 205 0COS 20
+0r2, SINWSIN2 © — Grz,2 COSWSIN20

(dSi/dS)*21(5!’0.5(0«"‘0:1” =
0.5(0¢r ~522)  SiNWSIN20 +0.5(0¢e - 622) 2COS WSIN2 0
+0r2,r SINWCOS 20 - Grz,2COS010520

for boundary velocities V“(normal) .V‘ (tangential) :

-(dVn 7ds)-xVi= 0.5(vre ~v22)Sin20 -0.5(vr,24 vz, ) cOS20 "b.S(Vr,z‘Vz.r)
‘(dVl /dS) - VN :"O.S(Vr.z +Vx,r)$in2(|) = 0.5(Vr,r”Vz,l)C032(ﬂ +O.5(Vr.r +V1,z)

The used bicharacteristics for various boundary conditions are shown in Fig.4.

It is remarkable that the number of bicharacteristics varies from 4 (pure

velocity contitions) to 6 (pure traction conditions),i.e. every von NEUMANN

condition requires an addittional bicharacteristic.Similar schemes are devised

for corner points and for points on the axis. _

Two numerical examples ,concerning solids made from mild steel and alumi-

nium,are discussed along with some similarities of the method proposed to

mixed finite element formulations.
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Fig.t:Axisymmetric solid with  Fig.2:Conditions at the boundary: :
partly irregular mesh  a)boundary curve : r=r(s),z=2(s) i
b)Traction conditions:Sw=5n(s),5r=51(s)

c)Velocity conditions: Vu=Va(s),Vi=5i(s)
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SOME QUESTIONS OF MATHEMATICAL SIMULATION IN THE
PROBLEM OF SHOCK WAVE STABILITY

A. M. Blokhin
Novosibirsk
USSR

The talk is a survey of results obtained by the author ([1]) in the problem of shock wave
structural stability.

In [1] this problem is interpreted as the investigation of correctness of the mixed problem
for gas dynamics equations with boundary conditions on a shock wave. For a stable shock wave
this problem has been set up correctly, for the unstable one it admits the construction of the
incorrectness example, like the Iladamard example.

In the linear case the mixed problem is formulated as follows. For ¢t > 0,z > 0,|y| < 00 we
scarch for the solution of acoustics system of equations

M2 0 00 M 0 1 0y 0000 4
A R R R P RALU A g O
0 0 01 0 0 01 006 00 Uy
. which satisfies the following boundary conditions for z = 0:
u1+d-u3=0,u4+u3=0,u2=ﬁ-Fy,_ngp'ug (2)
and the initial data for t = 0:
U(0,z,y) = Uo(z,y) - (3)

Here M(0 < M < 1),d, A, are some constants ([1]).
Using the results of paper [2] on a plane d, A one can single out a domain

K:2<0,d+M*)\)g*>0,0=1~M?,
in which exponential solutions of the mixed problem (1-3) do nut increase with time. In [1] it

- is shown that if a point (d,A) € K, then the following a priori estimate

0<t<T, (4)
R} = {(z,y)lz > 0,|y] < o}

N Ollwz(rry < C(T)- IVollw2rz ),

is valid. The existence of the a priori estimate (4) implies that the problem (1-3) is correctly
set-up in the domain K which is called the domain of the shock wave stability. All estimates
obtained for the problem with constant coeflicients were also obtained for the case of variable
coefficients. Then, by means of rather cumbersome methods the author managed to prove the
local theorem of existence and uniqueness of the classical solution for quasilinear solutions of
gas dynamics behind the curvilinear shock wave.

The talk discusses some problems of defining and investigation of difference schemes for gas
dynamics equations. We propose to design and investigate difference schemes on the basis of the
requirement of adequacy of the difference model to the initial diffcrential problem. By adequacy
we imply the following: a difference model is constructed so that by means of it one could prove
the theorem of existence of a solution for the initial differential problem. Due to quasilinearity
of a system of gas dynamics equations to prove the adequacy of a difference model to the initial
differential problem is rather difficult. It can be done easily for the linear mixed problem(1-3).
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8
A difference model for obtaining approximate solution of this problem is constructed so that
it could admit the construction of difference analogy of the dissipative energy integral. The
existence of such an analogy allows us to obtain energy estimate from which the stability of
the proposed difference scheme follows. This would mean the adequacy of the difference model

to the initial differential problem because in the presence of energy estimate the theorem of
existence of smooth solution can be proved via standard calculations.

References . .
1. Blokhin, A.M. Energy integrals and their Applications to the Problems of Gas Dynamic.-
Novosibirsk, “Nauka”,1986, 239 p. (In Russian).
2. Djakov, S.P. On shock wave stability. Z.experimental’noi i teoreticheskoi fizili, 1954, t.27,
No 3/9/, 288-296. (In Russian).
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A TVD-PROJECTION METHOD FOR SOLVING IMPLICIT NUMERICAL SCHEMES
FOR SCALAR CONSERVATION LAWS

J

A.Bourgeat" and B.Cockburn

The stability of Newton's method applied to implicit numerical
schemes for scalar conservation laws requires, in the general case, an
upper bound on the size of the time steps. We introduce a simple 'Iocally
defined projection , called "TVD-projection, and show how to use it to
obtain an always stable extension of Newton's method.

We consider the problem of actually solving finite difference
implicit schemes for the following boundary value problem

(1.1a) du+0d,fu)=0 ~in (0,1 x(0, 1) .
(1.1b) u(x=0) =by, on (0,T) ,
(1.1c) u(x=1) =b; on (0,T) ,
(1.1d) u(t=0) =y, on (0,1) .

"where feC' b, and b, € BV(0,T) ,and uo € BV(0,1). It is very well known

that the main difficulty concerning the resolution of an implicit scheme is
to solve at each time step the nonlinear equation defining the
approximate solution. One of the most popular methcds to do this ,is the
Newton's method. Its quadratic convergence makes it very attractive;
however ,its lack of global stability makes it useful only if a suitable
initial guess can be obtained. A widely used practice is to take the

approximate solution at time t", u", ,as the initial guess for the

calculation of u™',

M _ .
Up =Uy ’

u’h" =4, 7)) w=1,...,.M"

* Université S! Etienne ,U.F.R. Sciences, 23 rue D' P. Michelon, 42023 St Etienne Cedex 2,

France
** IMA, University of Minnesota ,514 Vincent Hall,206 Church Street SE, Minneapolis,MN
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But in this case the sufficient conditions for the ronvergence of this
method given by the classical theorem of Kaniorovich ,impose an upper
bound on the time step At" =t"*'-t" .in this way ,the main advantage of
using an implicit scheme is lost.

In practice, the number of inner iterations M" is usually taken to
be equal to 1, but some authors prefer to do a few inner iterations in order
to improve the accuracy of the approximate solution. But it should be
noted that in any case if the time step is too big the stability of the
method is lost. For instance consider a problem of the form (1.1) with

f(u) = 20 u3(20 W3 + (1- W¥)!

uy(x) =0 x € (0,1) ,
by(t) =1 te (0, T=0.3) ,
b,)=0 te (0,T=0.3) ,

and consider the approximate solution obtained by discretising (1.1) with
the implicit Godunov scheme. Then ,if we solve it with no limitation on

M", it becomes unstabie as the time step become:: greater or equal to 0.7
Ax. Note that the CFL-condition for the explicit Ciodunov scheme is in this
case At< 0.26 Ax |

Writing down the implicit Godunov's implicit- scheme for (1.1) and
its Newtonian iterations ,in a first section ,we stress the fact that the
stability of Newton's iterations depends essentially on the size of |f"}
rather than the one of |f'| . In the case f' >0 we make these statements
precise by calculating explicitly the eigenvalues of the operator  grad(
¢",) and the Kantorovitch convergence conditions.-We then display

sufficient conditions of convergence and a non-linear CFL-type condition
involving only the quantity :
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where disc(.) represents the maximum ylze of the discontinuities

of the initial data. In particular ,it is shown that # the ratio
(- 1fN-

is big enough the Newtonian iterations are stably .

In a second section we test numerigglly the stability of the
Newtonian iterations in five different Riemann problems.The first three of
them have a non-decreasing nonlinearity ;the last two have a non convex f ,
and their solution present a sonic point. Thosy tests allow to define a
function that mesure the stability .of Newtonian iterations and will serve
as a reference for evaluating the performange of our proposed TVD
projection method.

In the last section we introduce a new and very simple method
for overcoming the Newtonian iteration difficulty. It consists in replacing

the inner Newtonian iterations by the followiny modification

(&) n
Uh =Uh ’

U= P yenuy =t M

where ¢," is the same as before,and the operator P(v ), calied
TVD-projection, is a locally defined projectinn verifying the stability
property:

IP(v, ) (W )ligy < VMg,

With this new inner iterations procedure, no wuscillations due to the
linearization leading to the definition of ¢," appear anymore; and the
method is then always LN BV-stable regardlaus of the size of the time
step. However the price that we have to pay for :tability is a loss of total

amount of mass , due to the projection P(u{™,) ,which is added to the

loss of mass due to the standard Newtonian iteritions. Nevertheless ,we
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have to point out that when the step size At" is :«uall enough our method

reduces to a Newtonian one. Our numerical :-perience indicates that
this supplementary loss of mass tends to zero with the number of inner
iterations and that once it becomes zero it stayé cqual to zero ,so that the
method coincides with the Newton method after i1 certain number of inner
iterations. Once this happens, convergence is acliuved very quickly and it
suffices to use a stopping criterion based on a «ontrol of the amount of
mass lost by our projection .

Numerical tests, performed on the satne test problems as in
section 2, show that there is no more instability occuring under any time
step; morover using the above stopping criterion allows a time stepping
at least two orders of magnitude bigger than this one allowed by the

standard Newionian iterations.
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A STABILITY ANALYSIS OF THE GLIMM #»OE SCHEMB

. Yann Brenier
INRIA France

Let w, + f(w), =0 be a system of d conservation laws in on. space dimension. It is assumed that,
for each pair of states u, v in a neighborhood W of the oripin in RY, there exists a "Roe matrix"
(see [3] for a review of this concept) A(u,v) satisfying the following requirements :

i)  A(,v).(v-u) = f(v)-f(u) and A(uu)=f();
i) A(uv)= 2 A (u,v) Py(u,v)
k=1,m

where A,,..., A, are its m (m<d) real distinct eigenvaluex of respective multiplicity d,..., d,,
(dy+...+ d,=d), and Py,..., P, are the coitesponding eig. wojectors :

PPy = akl Py forkl=1,..,m and Pi+...+ P = Ideniity ; ‘

iv) l.l,..., A, and P,,..., P, are Lipschitz continuous wilh respect to u, v ;

v) multiplicities d;,...,dy, donotdependonuandv;

vi) the eigenvalues are globally separated :

Aupv) < Ay, g (ug,vp) forany up,viugv,inWandk=1,...,m-1.

Under these assumptions (which include the case of many physical hyperbolic system

conservation laws and any strictly hyperbolic system), it i; shown that there exists a cons
C=C(W) such that, for any initial data wo(x) of total variation no larger than C, the Car - v
problem has a global weak solution w(t,x), valued in W, of bounded total varia':
Unfortunately, as it will be discussed below, this solution may not be physical.

The proof is based on a stability analysis of the "Glimm-R«e" scheme, that is a combinatic |

Glimm's random choice method [1] and Roe's Riemann solver [2]. A total variation estima - .3
obtained in the same way as Glimm did in his famous paper. ‘I'he analysis is somewhat simpler .c
to the extreme crudeness of Roe's approximate Riemann sofyer. Indeed, our estimates only i . ¢
the Lipschitz continuity of the eigenprojectors, instead of the properties of the exact Riem ::.n
problem. This is why any assumption of genuine nonlinearity of linear degeneracy can be avoic 1.
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Nevertheless, the main drawback of the method is that the so obtained weak solutions are not
necessarily physical and may violate the entropy conditions bi-'cause of the Roe Riemann solver ! It
would be very interesting to prove the same existence result when the well known entropy
modification of Roe's method [3] is used, but this has not b done so far. A different way would
be to show that the non physical shocks created by the Glimim Roe scheme are not stable under L.}
perturbations, and therefore can be easily removed. Some results have been obtained in this
direction, for the very simple case of scalar conservation laws. More precisely, it can be shown
that the solution of the Cauchy problem is physical, provided there is no entropy violating
discontinuities in the initial data, and either the flux function f is convex, or the initial condition
wo(x) is monotone.

Another interest of the Glirr:n Roe scheme is the stability analysis of LeVeque's large time step
method [4]. Indeed, in the same way as for the Godunov scheme, a la: ge time step version of the
Glimm Roe scheme can be easily designed, by "allowing waves to pass through onc another with
no change in strength and speed” [4]. This technique is closcly related to the concept of averaged
multivalued solutions [5], as well as Morton's characteristic (ialerkin method [6). In our case, it is
shown that the large time step Glimm Roe scheme is total variation stable, provided the time step is
limited in such a way that two waves of the same family cannot pass through one another. The
resulting stability condition is much weaker than the usual CFL one (for which no waves of any
kind are allowed to pass through one another). In the trivial case of a constant coefficient system,
for example, the scheme is mcc litionaly stable.

{1} J. Glimm, CPAM 18 (1965) 695.

(2] P.L. Roe, JCP 43 (1981) 357.

[3] A. Harten, P.D. Lax, B. Van Lcer, SIAM Review 25 (1983) 35.

{4] R.J. LeVeque, in "Numerical mcthods for the Euler equations”, INRIA Workshop, SIAM 1985,
[5] Y. Brenier, in "Numerical mcthods for the Euler equations”, INRIA Workshop, STAM 1985,
[6] P.N. Childs, K.W. Morton, Oxford University Computing Laboratory, 1986.

INRIA Rocquencourt, /8153 Le Chesnay Cedex, France
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On some open questions related to MHD Riemann problem

Prof. Dr. Mosley Brio
Department of Mathematic:
University of Arizona

Tucson, Arizona 85721 U.S.A.

We review briefly propertics of the MHD equations a: a hyperbolic system of conser-
vation laws (derived about 30 years ago) and some recent numerical and analytical results
by Brio and Wu (1985-87) which are in contrast with a popular view that the previous work
makes MHD Riemann problem as well understood as, for example, similar problem in gas
dynamics. In particular we show that MHD equations, due to their nonstrict hyperbolicity
and nonconvexity, are much closer to some systems arising in combustion, elasticity and
flow in a porous mcdium than they are to Euler equations of gas dynamics. We describe
some techniques found to be useful for these problems, such as bifurcation from a double
eigenvalue, global bifurcation, topological technique for traveling wave solutions, reductive
perturbation technique, numerical methods and list open problem for stability of wave pat-
terns, admissibility conditions, wave propagation and interaction which might be attacked
by the above methods.
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Qualitative Problems of Autonomous Hyperbolic
Systems

M. Burnat
Warsaw University

The qualitative theory of autonomous ordinary systems

du
1 —_—=
() ™ = s
may be generalised is some naturale sense to hyperbolic autonomous P.D.S. of the following
form
(2) Y Ai(u)dru = f(u)
i=1

where A;(u) are I x | matrices and solutions are mappings v : D C IR" +— IR! of some region

D.

The basic facts for the qualitative theory of (1) are:

a. Simple available global existence theorems.

b. In order to obtain the solution of (1) it is sufficient to know its set of values u(D) ,
because one may then parametrise it simply.

c. One may obtain informations about u(D) (for instance first integrals).

Because of the lack of global existence theorems for (2), the general qualitative problems
for the partial differential case should be formulated as follows: 1. Assuming the global
existence of the required solution u defined in some region D, construct the image u(D)
of the solution or at least obtain some information about it. 2. Knowing u(D) ask about
the parametrisation of u(D) by the variables z,,...,z, giving the solution. 3. Find image
manifolds M c R’ having the property, that for some infinite class of solutions we have if .

Knowing the image u(D) of the solution of a given boundary problem we obtain a
number of qualitative informations. Knowing how to parametrise u(D) we may construct
the required solution (the parametrisation may be simple or more complicate, for example
it may require solutions of some nonlinear P.D.S.) or run into contradiction. In the last case
we obtain a nonexistence theorem.

Our methods represent a fargoing development of those used in [1]. In the space of the
matrices, we consider the planes

n,l

x(u)={N:N = Z A:j(u)N;,' = fy(u), s=1,...1

i=1,j=1

where A;(u) = (A:j(u)) yN =(Ng), f(u) =(f1,---,fn). The C'-mapping u: D C IR" —
IR! represents a solution of (2) if for z € D:

f Du(z) = (8z,u5) = (Nij) € x (u(=))
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For the manifolds M C IR! we introduce the notion of the equipment of M. This are planes
x'(u) C x(u) satisfying for u € M the following conditions

dim x'(u) = const, for N € x'(u) N:R"w- T,(M)c R

We seek for solutions

u:Dw— M, D(u(z)) € x'(u(z))

We shall say, that the vectors A = (Ay,...,A\,) andy = (m,...,7) are adjoint at u, denoted
A = v if (3 Ai(u)A;) ¥ = 0. For the uniform hyperbolic systems (f = 0) we have

g i ; i
3) x®(u)={N:N=Z§®r\, q<+oo,*'r*-*f\}=x(U)

=1

(see [2]). This equality may be considered as the most general, geometric definition of the
hyperbolicity. Because of (3) the image manifolds are tangent to vectors v, what allows us
the construction of this manifolds. We shall give two examples of concrete results.

EXAMPLE 1 (sce [3]). Consider the hyperbolic systemn describing the steady planc
flow of the ideal plastic material.

9z,0 — 2k (cos 29 3;, 9 +sin29 8,,9) =0

Or,0 — 2k (5in29 0;, 0 — c08299,;,9) =0

(82,01 + 8z,v2)5in29 + (02, v1 — Oz,v2) cos2d =0
Oz, v1 + 0,02 =0

u = (v1,v2,9,0), u:Dc IR? » IRY, n=2 =4

We have two characteristic vectors and the two corresponding kinds of characteristic curves
1 2
C,C. From (3) we deduce:

Theorem 1. All two dimensional C'-image manifolds M; : u = ¥ (uy, p2) may be
constructed by solving the following linear hyperbolic system

Op,v1 +tgd0,,v2 =0 Op,v1 — ctg ¥ 0,02 =0
Op,0 — 2k 0,9 =0 Op,0 +2k0,,9=0

Consider the problem of drawing of a plate through
the die. In the region D, which boundary consists
of the curve T (the working part) and characteristic

1 2
curves C, C, we seek for the solution satiesfying the

following nonlinear boundary conditions
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onC: vy sind —vgcos?d = —Vsind V = const >0
2 h
on C: vicosV +vzsind = V(1 —¢) E=1—7{‘
x
i : MNa) = ——
ina (a) 1

We have to determine the solution and the region D Lunowing the curve T and numbers
V. h, H. The solution may be singular in Lm. Let Z = 2\ {{,mn) and K(Z) be the class
of mappings 1 : Z — IR satiesfying the following conditions: 1, u is in Z of C'-class with
thie exception of some weak discontinouities along characteristic curves.

N ! 2 .
2. For p € D the characteristic curves C (p),C

m (p) coming ont of p meet the characteristic curves

(1, a), ({,a). Using the maximal equipiments of the

image manifolds AL, C I we obtain, without any

{ asstumptions about the singularities at Lm the fol-

1 lowing
Cip) b

2
C(p) 4

Theorem 2. For given 0 < € < 1, ¥ # 0, there cdists exactly one image manifold
Mg, V) such that for each solution of our problen v € K (Z) and arbitrary working part
T :u(z) C My(e, V). If T i given, then nuder assumption that the solution v € N(Z)
exists, w(Z) may he uniquely otermined.

The uniquencss, a number of qualitative informations. and some nonexistence theorems
arc obtained.

Example 2. Cousider the system deseribiug thie plane, non-steady isentropic gas How,

die+ vy Oy e+ v 0y kedive =10
ek ey Op v 4 vy Opyv ; grade =0

u={c,vy, ), w:DC IR IRP, n=1=3.

In the case of the one dimensional non-steady flow the conieal sohitions play an important
role (sce [4]). For the uniform hyperbolic systems (2) there often exist simple available
conical solutions. Suppose that for the manifold Af, € k'l & < 2, there exist functions a:
M- IRLi=1,...,n—k, 7 lincarly independent, 1T(w) C IR" denotes the plane inchiding
. 1 n-k N
€ M", and tangent tolin o (u)... o (n)], so that the mapping weonry @ D C IR™ v+ Al
given by the conditions ueon = w for » € 11¥(n), y = const, represents in some domain 1D
the solution. Image manifolds allowing this simple conieal parametrisation we call conical
. . . . . . . . 1
image manifolds. Qur problem is to find for (4) stiple available conical manifolds Af, C IR™.
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Using (3) we get the following answer (see [5],[6]):

My:u=di+pmy+g(pz),  (p1,2) € R

where
2
7= (v0,m,7) = (0,7) =const, (1) —4t-9}=0
g(pn2) = (0,91(p2), 92(p2)) = (0,9)

The functions g;(js,) have to satisfy the conditions (7,§) # 0, ¢1§2 — 152 # 0. Assuming
¢ #£0:

R (o7 (= 3)) i fo (- 2e)] i o (0= 22e)]

YoC Yo

Infinitely many other, more sofisticated conical manifolds 1nay be constructed.

By means of our mcthods we may for (4) investigate the interactions of planc waves
with and without shocks. For steady flows we may construct a wide new class of three
dimensional nozzles, which transform one uniform flow into another one without shocks (sce

(7).
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HIGH RESOLUTION FINITE VOLUME SCHEMES
AND COMPUTATIONAL AERODYNANMICS

by

D. M. Causon
Department of Mathematics and Physics
Manchester Polytechni:
Chester St
Manchester M1 5GD
U.K.

Over the past few years, substantial advances; have been made 1n the
numerical analysis of hyperbolic partial differential equations, especially
those governing non-stationary gas dynamics. A popular approach is to
solve numerically the time-dependent Euler eguations which are of
hyperbolic type. Shock waves and other discontinuities can be captured
accurately without special treaurent by employing a -so-called
“time-marching” numerical scheme. It is now possible to apply available
computer codes to problems which involve complex physical phenomena
including muitiple shock waves, vortex sheets :and combustion processes.
Examples of methods 1in use are the flux-corrected transport (FCT)
algorithms of Boris and Book (Ref. 1), the random choice method (RCM)} of
Chorin (Ref. 2) and Glimm (Ref. 3) and the total variation diminishing
(TVD) schemes, of which Refs. 4-8 are representat.ive, All of these methods
stem, essentially, from a widespread dissatisfaction with the highly
diffusive schemes of the early 1970’s. These were characterised by the
appearance of non-physical undershoots and «wvershoots around captured
shock wave profiles and the need for large dosss of artificial viscosity
(numerical “smoothing”) to ensure stability. ihe addition of artificial
viscosity 1n large quantities causes a maiked loss of resolution,
particularly in cases where complex shock wave interactions occur.

This abstract concerns the development and applir ation of a tctal variation
diminishing finite volume method for computational gas dynamics. This
method employs operator-splitting which enables a problem in three space
dimensions to be solved by applying a sequence of one-dimensional
operators, It 2)so uses discretisation by finite volumes, rather than
finite differences, in order more easily to myp the complex geometries
which arise in practice (Ref. 9). The classical MacCormack method is put
into total variation diminishing form by appenaing to the right hand side
of the corrector step, a specially devised artificial viscosity term. The
ideas behind the design of this term import the thecry of flux limiters
(Refs. 4-6). Essentially, the term applies precisely the correction needed
to limit overshoots or undershoots at each mesh.cell. That is to say, it
is a form of artificial viscosity which has a spatially varying
coefficient. This is in strong contrast to the more classical methods
which apply excesses of smoothing through the use of artificial viscosity
tarms having globally constant (and problem dependent) coefficients.
Mathematically, it removes from the modified partial differential equation
(the p.d.e. solved exactly by the numerical scheme) the term which is
responsible for producing overshoots/undershoots. The result is a scheme
which captures shock waves with high resclution and compares favourably
with alternate schemes based on approximate Riemann solvers (see e.g Ref.
7), which are computationally more expensive. Clearly, the many production
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codes used in industry, employing the MacCormak method, can be modified

quickly and simply to yield a high resolution scieme.

various different flux Jlimiters can be used, some of which are more
compressive than others (Ref. 10,11); or, artificial compression
techniques can be applied explicitly, in conjuiction with any particular
limiter (Ref. 9). The paper will describe work which has been done to find
the most suitable flux limiter for use within the TVD MacCormack scheme.
Some results of our numerical experiments will 1.2 presented, together with
results for practical applications of the meth.d to high speed external
aerodynamic fiows, A sample of computed solutions are shown in Fig. 1.
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BY discontinuous solutions of problems of the calculus of variatiois
and of quasi linear hyperbolic differential equations

Lamberto Cesari
Departiment of Mathematics
University of Michigan
Ann Arbor, MI 48109, UtA

1. BV functions. In 1936 I introduced (1] a concept of BV functions, or functions of
bounded variation f(z), z = (z;,...,7,) € G C R”, f € L;(G), ¥ 2 1, in a domain G of
RY. I proved, among other results, that f is BV if and only if the nonparametric possibly
discontinuous surface S : z = f(z), z € G, has finite generalized Lebesgue area L(S).

Krickeberg in 1957 proved that f is BV if and only if f € L1(G) and f has first order
partial derivatives in the scnse of distributions which are fAnite measures g5, 7 = 1,...,1.
Thus, a BV function f(z), * = (z1,...,2.) € G, has distributional partial derivatives y;,
J =1,...,v, which are finite measures, as well as generalized partial derivatives D7 f which
are L,-functions.

In 1966 Conway and Sinoller considercd the Cauchy problem for quasi linear hyperbolic
equations (conservation laws)

z F; i — Y,
(0) Ug +J==Zl( J(u))y.v 0

u(0,y) = w(y),

uscalar, z 2 0, y = (11,...,y,) € RY, and other more geuneral problems, and proved that
whenever the Cauchy data are locally BV in IRY, then the equation has exactly one scalar
weak solution u(z,y), ¢ > 0, y € RY, which is locally BV in R* xR" and satisfics a suitable
entropy condition.

2. Calculus of variations in classes of BV functions. In 1986 Cesari, Brandi, and
Salvadori [babc] considered integrals of the calculus of varintions of the general form

(1) 1) = | fats,u(a), Du(e) i,

z=(z1,...,2,) EGCRY, u(z)=(uy,...,u,n), v21, m2>1,

and corresponding Serrin type functionals J(u), in classes of BV possibly discontinuous
vector functions u. The Serrin functional J(u) is obtained as usual by taking lower linits
on the values of I on AC, or W11(G) functions, process which is similar to the one with
which Lebesgue area is dcfined. First, we obtained closure and lower closure theorens,
hence theorems of lower scmicontinuity in the L;-topology, and finally existence theorems
of the absolute minimum of J(u) in classcs of BV vector functions u(z) = (uy,...,um),
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r € G C R*, whose total variations V(u) are equibountled [5abc]. We proved also that
I(u) £ J(u), and that J is a proper extension of I in the sense that J(u) = I(u) for all «
which are AC, or WH!(G).

3.Existence of BV possibly discontinuous absolute minima for certain integrals
without growth properties. Recently I considered [4a] multiple integrals of the forin

I(u) =/ Zl [U.-j(:r,u)]zj + Vi(z. u)| dx,

(2) G =1 j=1
u(z) =(¢1,...,4m), *=(z1,...,2,) € GCR",
u(z) =w(z), =z € B C IG,

and associated Serrin functionals J(u). [ studicd these integrals in classes of BV vector
functions u(z) = (uy,...,um), € G, with equibounded total variations. Here the U;; are
given functions of class C' and the V; are given locally Lipschitzian functions. The existence
theorems we mentioned in no. 2 above, and we had proved in [5¢] do not apply directly to
the integrals (2). However, I proved in [4a] that the sane integrals I(x) und J(u) can be
transformed into integrals H(v) and H(v) to which the existence theorems in [5¢f apply.
Thus, I could obtain the expected existence theorems for the absolute minimum I(u) and
J(u) for BV possibly discontinuous vector functions w, and of course 0 < I(u) < J(u).

In [4b] and in [4¢] I also studied a number of variants of the Serrin functional J ()
associated to the integral I(u), namely, functionals 7*(v), J**(u). I proved the needed
properties of lower semicontinuity in the topology of L, and the basic relation 0 < I(u) <
T**(u) < T*(u) € J(u). Itis clear that whenever we can prove that for the optimal solution
u we have I(u) = 0, then u is a solution of the differential system 3 °5_, [Uij(z, u)] ;
Vi{z,u)=0,i=1,...,m, 2 € G (a.e.)

4. Rankin-Hugoniot type properties in terms of the calculus of variations aud
BV solution

For m =1, v = 1, wc are dealing with the original infgral
(3) I(w) = / lus + (F(u),| dedy, GC R
G

z,y,u, F scalars.
fuhasalinel':y =£0(z), a <z <b, of class C' and of jump discontinuity, say

uz(z) = u(z, €(z)+), uy(z) = u(x, {(z)-), alz <,

then, under mild assumptions, the contribution of I on the value of the Scrrin type functi 1l
J* is 2 0, and such a contribution is zero if and only if

[ua(z) — uy(2)]} €'(2) = F(uy(z)) — F(uy(z)), a<z <},

along the line I" (Cesari [4¢]).
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For m =1, v > 1, we are dealing with the original integral

@  Iw=[

z, u scalar, u(z,y) = uw(z,y1,...,9), F(u)=(F,...,F.).
If u(x,y) has a surface I' : = L(y) = L(y1,..-,4), y € D, of class C! and of jump
discontinuity for u, say

ue+ Y (F()y;|dedy,  GCR™, dy=dy...dy.,

Jj=1

u2(y) = w(L(y)+,v), ui(y) = u(L(y)—,y), y=(y1,-..,yw) €D,

then, under mild assumptions, the contribution of I' on the value of the same Serrin type
functional J* is > 0, and such a contribution is zero if and only if

v

wa(y) = ui(y) = Y (L(W))y, [Fi(ua(y)) = Fitwi(y))].  y €D,

j=1

on the surface I' (Cesari {4¢)).
For mn > 1, v = 1, we are dcaling with the original iniegral

"

I(u) = / Z liz + (Fi(u))y| dx dy, (. C R?,
(5) < i=1

Y scalars, 'lt(.’l‘, y) = u(vy,... ,u,,,), F(u) = (Fh o ,Fm)»
and in this situation we musi nse the Serrin type integral J**. Let us assume that for a
given ¢ = 1,...,m, the component u;{x,y) of v hasaline I' : y = f(z), a <z <D, of class
C? and of jump discontinuity for u;, say

ui2(z) = wi(z, €(z)+), wi(x) = wi(z, ((x)-), a<z <,

while the remaining components up(2,y), h = 1,...,m, h # ¢, are continuous in a neigh-
borhood of I'. In this situation, let us take

u"B(z) =(ui(z, £(z)+); un(z, £(z)), h#i, h=1,...,m),
(@) =(ui(z, €(z)-); un(z, ), h#i, h=1,...,m), a<zx <,

I proved in [4¢], under mild assumptions, that the contribution of I' on the value of the
Serrin type integral J** is > 0, and such a contribution is zero if and only if

[uiz(x) — v ()] €(x) = Fi(u"B(2)) = Fi(u"'N2)), a<z<b,

along I' (Cesari [4c]).
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5. Existence of BV discontinuous solutions of the Cauchy problem for certain
hyperbolic differential systems.

Letm>1, v=1,let F(u) =(F,...,Fm)beofclass C! in R™, and let the functions
w(y) = (w1,...,wm), ¥ € R, be bounded and locally BV in R, say |w;(y)| < M in R,
and V [wi(y),-M <y<M|<H, t=1,...,m. Let L be a Lipschitz constant for F in
[-M,M]™. Let R,T be arbitrary constants with LT < R,andlet G =[0<z < T, -R+
Lz < y < R — Lz). Then, there is a vector function u(z,y) = (u;,...,4m), (z,y) € G, with
lui(z, y)l < M, Vy(u;) < HT, V,(u;) < LHT, satisfying

uir + (Fi(u))y =0, (z,9)€G (ae),  u(z,y)=(u1,...,um),
u;(0,y) = wi(y) a.e. in [-R, R], i=1,...,m,

z,y scalars (Cesari and Pucci [6b]).
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Convergence of the Lax-Friedrichs Scheme an'd Godunov Scheme
for Isentropic Gas Dynamics

GUI-QIANG CHEN

Courant [nstitute of Mathematical Sciences, New: York, USA
Institute of Systems Science of Academia Sinica, Beijing, PRC

We are concerned with the convergence of the Lax-I'riedrichs scheme
and Godunov scheme for the system of isentropic gas dynamics. The
Cauchy problems in the Lagrangian coordinate and the Eulerian coor-
dinate are respectively

{ s p(v)e = 0,(v)<0

vy - Ug = 0,

(2,9)]e=0 = (uo(z), vo(z)),

and

{ pr + (pu): = 0,
(pu)e + (pu’® +p(p)): = 0,p'(p) >0,

(2 u)le=0 = (po(z), uo(z)).

where po(z),uo(z) and vp{z) are bounded measurable functions. For
polytropic gas, p(v) = kZv™", where v > 1 is the adiabatic exponent.

Nishida {1] established a global existence theorem with arbitrary data
of bounded variation ¥y = 1 by using the Glimm scheme [2]. To the
case v > 1 which is of more importance, many studies liave been made
provided the data satisfy certain mandatory restrictions [3-6]. In 1983,
DiPerna [7] established a large data existence theorem for v = 1 +
2"3+l ,m > 2 integers, by using the viscosity method aud the theory of
compensated compactness [8-11]. Since technical reasons, the results all
were obtained provided that the initial density is away from the vacuum,
namely, po(z) 2 co > 0, or vo(z) < 2.

The Lax-Friedrichs scheme and Godunov scheme are finite difference
schemes proposed by Lax {12] in 1954 and Godunov [13] in 1959 respec-
tively. For scalar conservation law, Oleinik {14] and Coaway and Smoller
(15] proved that the Lax-Friedrichs difference approxirnations satisfy the
Helly compactness principle and obtained the convergence of the scheme.
For Cauchy problem of system of isentropic gas dynamics with the ini-
tial density containing the vacuum, it is plausible that one can’t expect
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to prove that the approximations, especially the Lax-Frirlrichs and Go-
dunov difference approximations, satisfy this compactness frame based
on the analysis of Liu and Smoller [16]. One needs to find a new com-
pactness frame which is satisfied by the Lax-Friedrichs and Godunov dif-
ference approximations and still ensures the existence of a subsequence
converging pointwise a.e.. Recently, Ding Xia-Xi, Luo Pei Zhuand I [17-
19} have found such a compactness frame satisfied by the I,ax-Friedrichs

" and Godunov difference approximations for the Cauchy problem (3, 4]

and, for 1 < 4 < % and the initial density containing the vacuum, still
ensures the existence of a subsequence converging pointwise a.e. on the
basis of the work of DiPerna {7, 20] with the aid of the theory of com-
pensated compactness [8-11]. Therefore, we obtained a global existence
theorem with arbitrary data. Furtliermore, we (21] have introduced a
generalized Lax-Friedrichs scheme and Godunov scheme for the inhomo-
geneous equations of gas dynamics {with the sources) and established
its convergence theorem.
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NUMERICAL SOLUTION OF STATIONARY EULER EQUATIONS
WITII TIE HELP OF TIE SPLITTING UP METIIOD

S.G. Cherny
Institute of Theoretical an Applied Mechanics
USSR Academy of Sciences
Novosibirsk 630090
USSR

Acrodynamics is one of the important fields of application of the theory of hyperholic
systems. The hyperbolic systems of quasilinear equations are widely adopted for predicting; the
unsteady and steady supersonic flows of compressible gases.The deriving of analytical solutions of
these equations entails insuperable difliculties especially in three-dimensional problems. In this
conncction the use of numerical methods advances to the forefront. lowever, the construction of
eflicient numerical algorithms for solving the gas dynamics equations remains an urgent prohlem
of comnputational aerodynamics. - .

The present study is devoted to the construction of a new ellicient marching algorithin for
solving the steady Euler equations.

Consider a system of three-dimensional equations of gas dynamics in cartesian coordinates

3 .
S Bigk =0 1)

where I3 = By + By,

/0 0 éo 6o &o O
(4] 0 0 0 0 6,‘/9
f = [A] y B“ =11 1, B(? = 0 0 0 0 6‘2/9
P 0 éloct 6lpc? &loc® 0
6; = {(1]: : ;j ,¢ is the acoustic velocity.

Assume that vy > ¢. Then z, is the marching coordinate along which the numerical integration
of equalions {1) is carried out.

Approgimate a system (1) by an implicit difference scheme
fn+l - frt 3
Byt ——— 4 3 BpH At =0, (2)
hl =2

where n is cross-section number in the z; direction.
For implementing the nonlincar difference equations (2) we shall consider an iterative scheme

vl _ fn v _fmn 3
f e mn L Y a0, 3)
=2

llere v denotes the iteration number in the n + 1-th marching cross-section.
Write down the scheme (3) in a canonic form

v+l _ v
C"L—hT‘f‘ =-W", (@)
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3
where C¥ = (B!, + hy ZB,"A,) ,

WY = (u"f_ +ZB,A]).

I1=2
Alter an approximate factorization of the operator CV:

C¥ ~ (B, + by BE A2)(BY)) T (B + i By A2 )(B1) ™ (B + b By As) (BT )™ YW(BY, + i B, As)
the scheme (4) is replaced by a scheme in fractional spets

(BYy + hy By Ag) €914 = ¥
(DY) + hy By Ag) €4%/4 = By, gv /8
(BYy + hy B, Ag) €v13/4 = By, gv+¥/4 . (5)
(Bf1 + h1B%As) €% = BY, €43/
fu+l = fu + hl £u+1

Its solution at each fractional step is derived by scalar sweeps or a scheme of running
calculation.

It is shown an absolute stability of the iterative scheme (5) and its convergcnce to the
solution of the implicit scheme (2).

It is proposed a version ol scheme possessing a conservativeness property and having a
higher approximation order in ;.

The accuracy and the efficiency of the proposed numerical method is examined on the
problem on the interaction of an oblique shock wave and a plate. A good agreement of the

numerical solution of the problem with an exact one and a fast convergence of iteratioms is
demonstrated.
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Analysis of Saw-Tooth Instabilities on
Moving Gravity Surface Waves

Sgren Christiansen
Laboratory of Applied Mathematical Physics
The Technical University of Denmark
DK-2800 Lyngby, Denmark

Surface water waves under gravity [W1] constitutes a hyperbalic.
moving boundary problem. For the solution of such problems various
methods are at disposal [Y2] . In some of them Laplace’'s equation (see
below) is solved separately: (1) by differential equation methods
[C1.C2,H3,K1,01,P1,Y2] or (2) by integral equation methods
(p2,H3,L3,L4,L5,L7 ,N]1,N2,N3,83,V1,Y2]. In [B1,C1,H1,H2,N3,01,82,%5] and
notably in Longuet-Higgins & Cokelet [L7] it is reported that in the
course of the computation, when the equations are integrated forvard in
time, a smooth surface curve may develop into a curve with A supcrimposed
saw-tooth shape. The problem has been overcome by an artificial umoothing
of the boundary curve. We shall here try to investigate the wate, wave
problem, hoping to contribute to the clarification of the difficnlti=s
mentioned,

We consider a two-dimensional water problem, 2wx-periodic in the
(horizontal) x-direction, with horizontal bottom y = O with the y-axis
pointing upwards (gravity g = 1) and with moving surface curve y =

(x.t), where t is time. Inside the region a 2r-periodic potentinl ¢ =
(x.y.t) satisfies Laplace’s equation A¢ = 0, while ¢y = 0ony w0, Ony

= n the potential ¢ satisfies well known boundary conditfons [S6], which
make the problem non-lfnear. By introducing ¢{(x.t} = ¢(x,n(x.t).1). i.e.,
the potential ¢ evaluated on the moving boundary, the conditions on :he
moving surface can also be written

n, = Q(xemt) - n (x.t) b (x.n.¢) (1
1 2
v = H - a(x.t) - 5 ¢ (x.n.¢)
+ % ¢,(x.n.t)’ - n(x.t) & (x.n.¢t) ¢y(x.n.t) . (1)
where H is a constant.

For x := x, ® 1 2¢/N; 1| = 1,2,..., N (with N even) the function.
n‘(t) tm n(x‘.t) and "(t) tm p(x‘.t) are to be found., These functions

are combined into one 2N-vector t = [*l""' *N' *N+l""'¢2N]T ]

["l""'nﬂ' vl.....v“]T . The potential ¢ is expressed by means of ¥ :

terms, each 2v-perfodic, satisfying Laplace's equation and the condi ion
on y = 0, and each with an unknown coefficient. These coefficients a-e i
- A
52




—p

determined in terms of ¥ by solving a system of linear algebraic

equations [I4], while the derivative 7n_ is approximated in terms of

x
(ni)T. e.g. by means of periodic splines [I3]. Hereby the quaniities at
the right hand side of (1) are expressed in terms of ¥, and we ure

therefore led to a system of 2N ordinary (autonomous) differential
equations (ODE’'s) [L2)

¥ o= F(¥) . 3)

For the analysis of such a system it is crucial to determiue the
Jacobi matrix J. with elements Jij = OF‘IGWJ . In the special cnse where

Ny =MNg = ... =Ny =3 ; (a horizontal surface curve) and Py =¥y = ... =
L

N = : (a constant surface pressure) the 2N x 2N watrix J has the form
=

] = (3)

B 10O
7o jux

where each of the submatrices are N x N, and the matrix g is circulant
[(D1] and symmetric.
The matrix J, {3). has the following N + 1 (imaginary) eigenvalues,

with (2 = -1,
X(o, =0 (4a)
A, £ ¢ o) i k=1, 2, ..., g. (4b)

where

oK) o L tanh(kn) . (4¢)

vhile J. (3). has only 2N - 1 (complex) eigenvectors, indicatiny that the
matrix 1 is defective [N4] . It 1s perhaps not surprising that the

eigenvalues are expresaed in terms of a(k) « (4c), which also enters in
the formulas for infinitesimal waves on a horizontal]l surface [L1]. It is
;;;o important that the absolute largest eigenvalues are the two with k =
Systems of ODE can be integrated numerically using various numerical
methods [L2] [Y1]: each method is characterized by a region of absolute
stability [84]. Let A be an eigenvalue of ] and h be the time step, then

if Ah is outside the region, the solution will develop a growing
component of the eigenvector corresponding to A.

In the present case the eigenvalues k(le) t . + ca("/z) have
eigenvectors which combine to a saw-tooth surface curve, described by

(n‘)T . With N\ being purely imaginary the integration methods do not

create saw tooths, provided that the step length h satisfy 0 ¢ lhlh < 8,
or
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0¢h<h T . (5)
mex °( ) g tanh (gn)

where 8 depends upon the method used. For example:
Adans-Bashforth-MNoulton, 4th order (ABM4) in PECE mode [Y1; p. 458]: 8§ =
0.92620161, cf. [S4; Fig. 24] [T1: Fig. 4.2] .(For a related prublem (F1]

1t 1s found that At = (4x)172))
Actual numerical calculations have been carried out using various
methods, in particular the method ABM4 (which was used in [L7]), with N =

36. With u = 1 then B o = 0-218308 according to (5).
The initial functions

N al+e sinx (6a)
¢ = (e/Vtanh 1) cosx (6b)

correspond to a wave of permanent form travelling®to the right with phase

speed c = Ytanh 1 , provided that |Je] 1s infinitesimal [L1]. From (6) an
initial vector can be derived by wmeans of a sampling in x.

The value ¢ = 0.01 is swmall enough so that the numerically computed
results follow what could be expected from the linear theory for a
horizontal surface curve: If h = 0.24 > h__  sav tooths will become

visible with an amplitude which is independent of x, but grows with the
number of timesteps as predicted, while for h = 0.18 < hnax saw tooths

apparently do not develop.

The value ¢ = 0.1 {3 so large that the above results are not
applicable: If h = 0.24 the saw tooths again become visible. but now with
a large amplitude near the crest and a small amplitude near the trough.
This same feature is noticed from Figure 4 in Longuet-Higgins & Cokelet
[L7]). From this coincidence it is - of course - not possible to conclude
with certainty whether the saw tooths observed by Longuet-Higgins &
Cokelet, and others, simply are due to an integration with a tiwe step
which is too large. (Professor Jean-Marc Vanden-Broeck, Math. Res.
Center, Madison, WI, U.S.A., is thanked for discussions relating to that
conclusion.)

The numerically computed evolution of a boundary curve may depend
upon which integration rule is used, whereby some aspects of the problem
under consideration may be blurred. Therefore it may be advantageous
directly to compute the Jacobi matrix by numerical differentiation (e.g.
by means of [I1]) at a prescribed boundary curve and boundary putential,
and subsequently determine numerically [I2] the eigenvalues and
eigenvectors for J. (For a somevhat related problem [R1]. where Laplace's

equation {s solved by means of a certain integral equation, a similar
computation has been carried out.)

Actual numerical calculations can reproduce, with high accuracy, the
results (4). including the double eigenvalues. For other boundary curves
and/or boundary potentials, than those leading to (4), it is observed
that two opposite, double, purely imaginary cigenvalues are split into a
quadruple of simple eigenvalues, A\ = + a 2 tp , {.e. two with positive,
End]t;o with negative real part. (A similar splitting is reported in

R1].

The theory for two-dimensional water wave problems states that waves
can travel with a permanent form with a certain phase speed. and that the
waves are stable to superharmsonic perturbations provided that the waves
are not too high compared to the wave length [L6,N1,81,21]. The permanent
form corresponds to certain functions n and ¢, for t = 0. If however, for
t = 0, such functions n and ¢ are chosen, which do not correspond to a
permanent form, there will be a change of form, which may be obtained
when soms components are groving, corresponding to sigenvalues with
. positive real part. At a later stage the growing components may turn into
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decaying coaponents. Therefore, when waves of non-permanent form evolves,

it may be accoampanied by eigenvalues with positive real part. (Ir. Ulla

Brinch-Nielsen is thanked for discussions leading te that conclusion.)
Therefore the following questions arise concerning the eigenvalues

with positive real part:

(1) Do these eigenvalues indicate a genuine instability inhereunt in the

system of ODE‘s?

(2) Do the original system of PDE's possess instabilitfes?
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DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR
* ; NONLINEAR CONSERVATION LAWS

B.Cockburn, J. Jaffrétt, Veerappa Gowdatt

t IMA, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455, U.S.A.

f t INRIA, B.P. 105, 78153 Le Chesnay Cédex, France.
i
! Solutions of scalar nonlinear conservation laws are calculated by using discontinuous finite

elements. First order schemes are obtained with piecewise constant approximations, while higher
{ degree piecewise polynomial approximations give higher order schemes. On the boundary of the
{ discretization cells, numerical fluxes are calculated by using one-dimensional Riemann solvers.

Special attention is given to the piecewise linear case for which truely multidimensional slope
i limiters are defined. '

1. Introduction

{ Recently there has been a large activity to design and analyze "high resolution" schemes

i for nonlinear hyperbolic conservation laws and one can find many references in the proccedings of

‘- this conference. In this paper we propose to use the discontinuous finite element method for such a
purpose.

It is a finite volume method where the volumes considered for mass balance are the cells
of the discretization themselves. Inside a cell polynomials of arbitrary degree can be uscd, and on
the boundary the numerical flux is calculated by using Riemann solvers in the normai direction.
Actually we consider only the case of piecewise constant and piecewise linear approximations. The
latter yields a higher order scheme which has to be stabilized by a slope limiter that is a
multidimensional extension of Yan Leer's one {10].

The linear version of the discontinuous finite element method have been first analyzed in

‘ [8] and more recently in [7]. The nonlinear version has been used in reservoir simulation [2], [3]
and is presented and analyzed in the one dimensional case in [1],[4]. It is also closely related to the
MUSCL scheme analyzed in [9].
We consider here the scalar nonlinear conservation law

{i (1.1a) au/at + div flu) = 0, x ¢ RN,
(1.1b) ' u(x,0) = up(x), x € RN,

given 71[0,1] » R™ and ug: R - [0,1]. The extension of the method to the Euler equation is under
way using a field by field decomposition.

2. Ope-di ional imati

Let us denote by ... < X172 < Xjsq1/2 < .. and by KD = I xj_y /2% 972 [, 12
the points and the intervals of the discretization of R. The measure of K(1) is hj = Xy, 1 /2-%j-1/2-
We introduce the approximation space vK of functions which are discontinuous at the discretization
points and restrict to polynomials of degree k on each interval K(1) and v‘-,, 172 vR,,\ 1,2 and vy
denote respectively the left-handed and the right-handed limits at x, { /o, and the mean value over
K(1) of a function v in VK. |

The approximation equation is obtained by multiplying equation (1.1) by test functions
in VK, by integrating over the intervals and by integrating by parts the term containing the derivative
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with respect to space. Thus the approximate problem consists of seeking up, € vK solutivn of

2.1 /K(i) (dup/ot) v dx -/K(i) flup) (dv/ox) dx +
F|*1/2 VL1,1/2 - Fl-l/2 VR1_|/2 = 0, for V€Vk , 1eZ, t > 0.

The numbers Fy, | 5, 1€Z are numerical fluxes which are functions of the two limit

values at the discretization points and are calculated by means of exact or approximaie; Riemann
solvers [5], [6].

Note that for k = 0 scheme (2.1) reduces to the first order finite difference scheme

dUi/dt + (F1+l/2 - Fi']/2) / h| =0, teZ, t » O,

and that, for k > 0, conservation equations are obtained by taking for v in (2.1) the characteristic
functions of the intervals. :

For k ; 1 scheme (2.1) does not have good stability properties and the calculated
solution oscillates. To stabilize them, we extend to the discontinuous finite element method the
notion of slope limiters already introduced by Van Leer [10] for finite difference schemes. We now

denote by u*p,(t) the function satisfying (2.1) and we impose on up,(t) to satisfy

(2.2) Uqqy Upttd dx) 7 hy = Ug(t) = U*(t),

in order to preserve mass balance, and

(2.32) (1-00U;(t) + oMIn(Uy_ 1 (1), T3(1) ¢ uR_y /2t ¢ (1-00U;(t) + aMax(@;_ (1), U;(t)),
(2.3b) (1-00U; (1) + oMIN(U(0), Uy, 1 () ¢ uby, /200 ¢ (1-00TH(E) + oMax(Uy(h), Ty, (1)),

23c)0¢x ¢!,

(24) Uh(X) = i for x € K(i) if U_‘ ? Max(_u_i_],Uh])or Ui 4 Min('u_i_],U‘,'),

to limit the slope of uy,. Since up(t) is not uniquely defined by (2.2-4), one can also impose for
instance that uy,(t) be as close as possible to u*,(t) with respect to the L2 norm.

The parameter « controls the slope limitations and the corresponding added numerical

diffusion. In the case of a piecewise linear approximation (¥=1), when « = 0 the slope limited
solution is piecewise constant so it is the strongest possible slope limitation; then we are taken back
to a first order finite difference scheme and the added numerical diffusion is maximum. On the other
hand, the larger « is the looser is the slope limitation and the smaller is the added numerical
diffusion.

Note that in such a formulation, the slope limiting process is a step distinct from the
finite element calculation. This makes it easier to design various time steppings - explicit, implicit,
higher order [4],[11] - since they will affect only the latter, and to extend the method to the
multidimensional case.

A crucial point for the method to be computationally efficient is to choose the adequate

integration formulas in eq. (2.1). For example, in the case k=1 and of first order backward
differencing in time, numerical experiments have shown that the trapezoidal rule for the integral
containing the derivative with respect to time and the midpoint rule for the integral containing the
derivative with respect to space is the best choice while more precise formulas give more costly and
not as nice results. 58
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We consider a regular discretization of the domain Q with n-simplices and 1 rectangles
K € T, of diameter less than or equal to h and we define the approximation space V! of functions
which are discontinuous across the interelement boundaries and which restrict to P! polynomials on
the n-simplices or 0 polynomials on the n-rectangles. The degrees of freedom of functions of V!
are, element by element, their values at the vertices. We denote them VK, A WithKe ! and A a
vertex of K.

Another choice is possible in case of a structured mesh of rectangles: one can still take

p! polynomials (instead of Q') in the definition of V'. A convenient choice of the degrees of
freedom is the average value of the function in the element and its slop®s in the directions paraliel to
the axes. Then a multidimensional scheme is obtained by writing the one-dimensional scheme in the
directions parallel to the axes. This is what is done usually in higher order finite difference schemes
but this is not what we can call a truely multidimensional scheme.

As in one dimension, we calculate Up € v!in two steps: a finite element calculation

giving a predicted solution u*h ¢ V! followed by a slope limitation yielding uy,. The finite element
calculation consists in solving the following equation:

(3.1) Jy (U /7at) v dx - Tlup) gradv dx + [y F v d¥ = 0, for veV! , KeTy,

where the numerical flux F defined on the edges of the mesh is calculated as follows.
First we note that the integral over 2K is the sum of integrals over three or four edges.
Any integral over an edge E will be calculated by means of an integration formula

/E Fvdy = 2‘=]’np' ]3| F(pi) V(p1),

where npi, p;, P{ denote respectively the number of integration points, the weights and the points
of the integration formula.

Then we note that the numerical flux F is-an approximation on the edge E of the quantity
f.v where v is a unit normal to the edge E. Therefore it is legitimate to calculate F(P,) by solving

the one-dimensional Riemann problem in the direction of v, relative to the function f(P{).v and to
the initial data the two limit values u(P)*, u(P{)~ of uj, at the points Py. Thus F(P;) is calculated
by the same formulas as described in section 2.2 for the one-dimensional case with u(Py)~,
u(Py*, T.¥ replacing respectively u'y, | /2, WR, 172, .

We formulate now a multidimensional extension of the one-dimensional slope limiter
(2.2-4). For any element Ke T, and any veV ! we introduce the following notations:
h

nv(K) = number of vertices of K,

T(A)» (Ke T, Aisa vertex of K },

_ nv(K)

V= ( 1; VK,ay} / nV(K) = average of v over K,

Vi = CVKAD 1=1,0v(K) »

59




e e e e

A wereres e -

nv(K) x 2
JK(VK) = [ iZI (VK,/\i_ V] K'Ai) ]/ 2.

Jk measures the distance between v and u*h inside the element K.

The slope limited function u, must have the same cell averages as u*h to preserve mass
balance and its degrees of freedom will satisfy inequalities similar to (2.3),(2.4). This can be
achieved in the following way. Given u*h obtained from (3.1), we calculate for any vertex A of the

discretization the minimum and the maximum of the averages in the cells surrounding A:
UMIN(A) = Min U ,  UMAX(A) = Ty
KeTla K WG v
Then vy, is obtained by solving the series of minimization problems:

Find Up € v such that for all Ke T Uk e PcNQy and

JelUe) = Mi Je(V

where Py and O are respectively the following hyperplane and hypercube in R'V(KJ,

nv(K) =
Py = [ xeRW(K)) Ty X T VIO T ),

nv(K)
O = M [C1-00 Ty + o UMINCAY , (1-00 Wy + o UMAX(A) ]

It is easy to check that each minimization problem in K has a unique solution which can be
calculated by dualizing the constraint Vic¢Py and solving the associated saddle point problem: {2].
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A METHOD TO GET CORRECT JUMP CONDITIONS FROM SYSTEMS IN
NONCONSERVATIVE FORM

by J.F. Colombeau

Engineers use systems in nonconservative form to
represent shock waves. Numerical experiments show that these
3ystems have indeed such solutions; however,from the theoretical
viewpoint,they do not have discontinuous solutions in the sense
of distribution theory.

A theory of generalized functions which was developed to
give a meaning to all products of distributions([1,2], and {3,4]
for more recent presentations), can be wused to master
mathematically discontinuous solutions of such systems. The
equations have to be formulated in this theory. If one adopts
the weakest formulat.on (corresponding to the concept of a weak
solution 1in the distributional sense )then,in contrast with the
conservative case,one gets in general an infinite number of
possible jump conditions,depending on a parameter which has a
physical significance.

To resolve the ambiguity this theory suggests to state
the equations of physics in a way more precise than usual on the
shocks:one postulates that the basic laws of physics still hold
in a strong sense even in the infinitesimal space-time region
in which the jump takes place,while the constitutive equations
are not assumed to holi: in +this region.In basic cases Lhis
method gives nonambiguous jJump conditions and then they argree
with the results of experiments.

Unexpectedly this method can also be used for a new
insight (offering new numerical methods) into classical
conservative systems such as fluid dynamics:one can -within this
mathematical theory- transform systems from a conservative form

into an equivalent nonconservative form,whose numerical
treatment can be easier (recall the well known fact that formal
manipulations, which are valid in the case of smooth flows,can

alter the jump conditions in the case of shocks ;therefore these
transformations are not obvious).

The aim of this talk 1is to present this method very
clearly on four examples: elasticity (system with density-
velocity~ stress given in nonconservative form), fluid dynamics
(system with density- velocity - pressure- energy given in
conservative form), elastoplasticity and shock waves in viscous
media
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Formulas such as " Y¥Y8=(1/2)%6 " (Y=Heaviside function)
have been used since long time by physicists and
mathematicians.They give correct results in some Dbasic
circumstances (in fact the simplest , and so ,the more important
ones ). The genuine difficulty lies precisely in finding the
situations in which these formulas hold and, in general , in

finding the correct conditions.

1 J.F.Colombeau: New generalized functions and multiplication of
distributions. North-Holland 1984.

2 J.F.Colombeau: Elementary introduction to new generalized
functions.North-Holland 19885.

3 E.BE.Rosinger: Generalized solutions of n&hlinear PDE.
North-Holland (Math. Studies 144) ,november 1987.

4 H.A.Biagioni: Introduction to a nonlinear theory of
generalized functions (200 1p.) Preprint series Notas de

Matematica .State University of Camplnas UNICAMP, Campinas,
Sao~-Paulo ,Brazil.

Some results in the talk can be found in:
5 J.F.Colombeau,A.Y.LeRoux: Multiplications of distributions in
elasticity and hydrodynamics.J.of Mathematical Physics ,to
appear in february 1988.

Two related trends of works not developed in this talk:

This theoretical method leads to numerical methods;some
of them are to be found in
J.F.Colombeau,A.Y.LeRoux:Numerical techniques in elastodynamics.
Lecture Notes in Math.1270. Springer, 1987, p.103-114.

in non- conservative form .Advances in computer methods 6,IMACS
1987,p.28-37.

This mathematical context provides solutions of the
Cauchy problem in cases in which +there is no distribution
solution:
J.J.Cauret,J.F.Colombeau,A.Y.LeRoux:Discontinuous generalized
solutions of nonlinear nonconservative hyperbolic equations. J.
of Math. Ana. and Appl.In press.
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J.F.Colombeau,M.Oberguggenberger:Hyperbolic systems with a
compatible quadratic term : generalized solutions, delta waves,

and multiplication of distributions.
M.Oberguggenberger:Generalized solutions to semilinear hyperbolic
systems. Monatshefte fur Math.103,1987,p.133-144.
—————————————————— :Hyperbolic systems with discontinuous
coefficients; examples.Proceedings GFCA 1987. Plenum Pub. Comp.
in press.

acoustics.
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UNIFORMLY HIGH ORDER CONVERGENT SCHEMES
FOR HYPERBOLIC CONSERVATION LAWS.

F.COQUEL & J. CAHOUET
Research Group ‘
Laboratoire National d' Hydraulique, E.D.F.
6, quai Watier 78400 CHATOU FRANCE.

Some years ago, Leonard ([1),{2]) derived a difference scheme using an original technique
in order to combine monotonicy and high order accuracy. Based upon the attractive S-point linear
scheme Quick {3] without real theoretical frame, this scheme gives however remarkably sharp
profile for the linear advection equation. It was the investigation o/ this scheme and associated ones
([4)) which prompted this work.

We consider numerical approximation of the weak entropy solution of the scalar equation :

(1) { u + f(u), = 0 0StsT
u(x,0) = yy(x)

We present a systematic procedure to modify 5-points linear schemes such that convergence
towards the weak entropy solution of (1) can be established while high order spatial accuracy is
achieved even at non sonic critical points. Qur method might be described as a simple modification
of T.V.D. schemes which preserves BV A L* stability, entropy stability being achieved following
Vila's ideas ([5],[6]). Having developed a suited procedure to check T.V.D. correction, we will
state in a second part , precise results concerning the construction of uniformly high order acc.::ate
convergent schemes. Then, we derive several schemes based upon the Quick scheme which
enligthen, in some extents, Leonard's approach. Details .:¢ nroofs are provided in [12] .

1. T.V.D. AND ENTROPY CORRECTIONS OF 5-POINT LINEAR SCHEMES.

Let denote h™;, 1 the numerical flux associated with a 5-point linear scheme. Restr “ting

ourselves to E-schemes ([7]) which behave like the first order upwind scheme away from sonic
points, we may write, before T.V.D. correction : :

n En n
hiin = Y] + &in

In order to achieve BV L™ stability, we must "limit" the antidiffusive flux
n

1 n o
n j+1/2 n
% = I"jn/zl . Aviin
h j+1/2
where
n W - f@) Afin n
L e Y and Gup = G if Vap >
Afan 12
n h;»m - f(“;ln) n A fru/z ) n
Pis1n and Timn o if Vi <Y
Afjl+312 A 312
: . n Afn
with the usual notation V., = A
Avap

The reduced flux ¢®,,,;, thanks to the consistancy of h%,,, with f(u), only depen.’s on
.1 through a linear relation. This suggests to replace ¢, by a fuiwd fux!c.tion o(r) whose
restriction to "smooth regions” is ¢%,1p Owing to the set of sufficient conditions deriv d by
Harten ([8]) and Vila, ensuring the BV and L* norms decay, we can prove :

P Py




Theorem 1 : Assume that @(r) satisfies :

r)
(3(M,p) € R:x[—l,O])/(VreR, pso(r)<M and CP(r S1l+p)
Then the corrected flux
A hfn/z = g,'+;'/2 + “;‘n/z

where

Aap = 0 near a sonic point

1 (P( 112) .
a}'+1,2 = k |v i1 | -—f——L u;‘H P otherwise
T2

defines a T.V.D. scheme, which preserves L norm 8

There is therefore, as the mesh size Ax tends to 0, a subsequence in LY}, converging
towards a weak solution of (1).To achieve a good entropy production for the limit solution, we
slightly modify the corrective antidiffusive flux according to Vila's ideas (|5},16]). Thus if one
enforces a", )/, to vanish with the mesh size, we obtain

Theorem 2 : The following correction of the antidiffusive flux

fap = sgn(a””z) Min (Cax", la',,,1) with  (C.a)e R x]0,1|
ensures the entropy convergence 8

Notice that

(VA>0) (3C>0) /( a“,2 = a;'“n in any region where |Au+m| < A Ax)

so that the resulting scheme is still high order accurate everywhere except at the critical points
where T.V.D. property makes it necessarily degenerate into first order accuracy ([7]).Thi« perpetual
damping of local extrema leads the error to be O(Ax) in L™ norm.

2. UNIFORMLY HIGH ORDER CONVERGENT SCHEMES.

To overcome this main drawback Harten and al ([Y], [10]) have introduced the E.N.O.
schemes of globally high order accuracy in smooth regions. At this time, convergence estimates are
unavailabie but numerical experiments enlighten their extreme stability. Quite recently, Shu ([11])
has proposed a Total Variation Bounded (T.V.B.) modification of some existing T.V.D. schemes
involving the classical min-mod function in such a way that high order spatial accuracy is achieved
including at critical points.

We present here a systematic procedure to convert 5-point linear schemes into convergent
schemes( i.e. BV n L™ and entropy stable) of uniformly high order accuracy in space. As for Shu's
approach, there is a price to pay for this extra-accuracy ; namely the loss of the monotonicity
preserving property. However, the following estimates can btz performed :

Hull s hull _ + oax®)
L for 0SnAt<T
TV(u") S TV(yy) + O(Ax)

Theorem 3 : Assume that there exists (a,b) € R‘ﬁ such that the reduced flux @go(r) (Fig.1)
provides a scheme which preserves BV and L norm under the C.F.L. condition :
Max [V n| < B
Then for any M' and M" > 0, the scheme associated with the reduced flux qp. - (Iig. 2 j is
BVAL™ stable in 0<t<T under the same C.F.L. condition 8
) 65

S e er e g R e, v W w s e T M0 AR Tawe e AmeT®




i S = e

The main idea underlying the proof is to obtain , as Shu did , the following key estimate :
bvemr iz = hoopir +t Gap where |dl,,,| < B Ax?  foranyn.j.

, Then we ensure entropy stability as previously pointed out .

Theorem 4 : For any D > 0, there exist M' and M" > 0 such that the scheme is high order
spatial accurate in any region where derivatives of u are bounded by D (except at sonic points) &

3.APPLICATION TO QUICK SCHEME AND NUMERICAL RESULTS.

Under the latter guidelines, we present several convergent corrections of the attractive third
order accurate Quick scheme ( [3] ).The formal extension of modified Exquisite scheme ((4 ) to .
nonlinear hyperbolic scalar equations is shown to be T.V.D. Since its reduced flux suffers from

T) 1
a lack of symmetry { tp—:— # tp(—r-) } , another T.V.D. correction is designed to get this property.

Actually , Quick is modified in order to give a uniformly high order accurate scheme which justifies
in some extent the Euler-Quick scheme ([1],(2]) .

For steady-state computations, a delta formulation ([13]) is used to speed up the
convergence process. The implicit operator is discretized in space with the full Donor-('ell scheme
and the explicit part uses previous schemes.

g~

Theorem 5 : This implicit procedure preserves the total variation behaviour ( decay or
boundedness ) of the underlying high order scheme 3

P———

Numerical experiments are performed in order to compare the uniformly high
order convergent correction of the Quick scheme to the T.V.D. one. Numerical simulations of
unsteady and steady fluid flows containing shocks will be shown at the conference. An approach
allowing an easy extension to multidimensional system is described in ref [14] and applied to
multiphase flow simulations.

- NOMENCLATURE -

. oF = . =
AYian = Y - ¥ 5 Gap = 8(Wy,u) i Af, = f(uy) - ()
At

Ax : Meshsize : At : Timestep : A = -A—-
X
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- FIGURES -

Reduced flux of the 5-point linear scheme

~

Figure 1 : T.V.D. reduced flux.

Reduced flux of the 5-point linear scheme

(b+M'AxY) 1 (a-MAxD) L
1 1 1 T‘.‘. I . >
* 0. maz 1 b+M'Ax’ r

Figure 2 : T.V.B. reduced flux.
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Grid Generation for General 2-d Regions Using Hyperbolic Equations

Jeffrey Q. Cordova
Sterling Federal Systems
Palo Alto, CA

Timothy J. Barth
NASA Ames Research Center
Moffett Field, CA

A method for applying a hyperbolic grid generation scheme to the construction of meshes in general 2-d
regions has been developed. This approach is similar to that developed by Steger and Chaussee (1980) and
represents a generalisation of their work. The equations used by Steger and Chaussee arise from imposing the
constraints of orthogonality and volume distribution on the computed grid. These constraints can be relaxed
by introducing an angle control source term and this leads to methods for solving the standard problems
of hyperbolic grid generation.” Novel applications of this approach include controlling the propogation of
singularities, preventing shock formation (crossing grid lines), and the generation of internal grids.

INTRODUCTION

Over the past decade, the scope of finite difference methods has been extended to include equation sets
posed on arbitrary geometries. This has been accomplished through the process of numerical gri«l generation
wherein the geometry is mapped onto a simpler domain and the transformed equations solved theie:. For finite
difference methods, the simplest domain is an n-rectangle (n = space dimension) and the grid gene:ation
problem consists of mapping an n-rectangle onto the domain of the equation set. Thus, the geometry is
represented as a deformed n-rectangle and the numerically generated grid as a deformed n-lattice.

A variety of algorithms have been developed for numerical grid generation. Among these are alg=braic
methods, schemes based on solving partial differential equations and, optimisation techniques. AMany of the
methods currently in use are documented in Thompson (1985). The discussion here will center on ing
hyperbolic equations to generate two dimensional grids.

The notion of using hyperbolic equations to construct grids was first proposed by Steger and Cbh 1ussee
(1980). In this approach, an initial surface is propogated outward subject to spacing and orthog -ality
constraints. In practice, this technique suffers from three limitations: (1) discontinuities in the initi .: data
are propogated, (2) shocks (crossing grid lines) may form and, (3) boundaries other than an initial surfc  ay
not be specified. The first two of these may be overcome by strictly numerical techniques as demon. ted
by Kinsey and Barth (1984). The contributions of this research are to show how (3) may be overco . and

to give another method for preventing (2). Both results follow as a consequence of including an angle -ontrol
source term in the hyperbolic equations.

ANALYSIS

Let (¢,1) — (=,y) denote the mapping from computational space to the domain of interest (F.c. 1).
This mapping will be generated based on the following equations:
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Here, r = (2, y) and 8, V src user specified angle and volume source terms respectively. These equations
reduce to the Steger-Chaussee equations when cosd = 0.

The structure of these equations is obtained from a local linearisation about a known state #°, y°. This
results in the following 2x2 system:
As¢ + Bry =f (2)

where

A= (—ﬁ'j; Al ‘ﬁfl’frm)

B= ( -e:.;-. —1“—17’* G )

£ = (cos0 — co00°,V+ Vo).
A brute force calculation shows that B! exists when sinf # 0 and that
det (B~14) = — ::":’ = —aspect ratio squared
T (B~14)=0 ‘

It follows that the eigenvalues of P "' A are  aspect ratio. Hence, the system

rq+ B~ 1Arg = B7f (3)
is hyperbolic and the local solution consists of left and right running waves.

The mixed problem for this set of equstions consists of specifying initial data on # = 0 and boundary
dataon £ = 0 and £ = {nea- For the Steger-Chausse equations (cos# = 0), this problem is typically ill-
posed because the boundary curves n — [2(£,n), W(€,n)] , € = 0 or £mas need not intersect the initisl curve
orthogonally. From the geometrical nature of this problem, it is clear that angle terms can be chosen so that
Eq. (1) is well-posed. An important detail in this matter concerns the specification of boundary conditions.
As the solution is locally characterizsed by a left and right running wave, only one piece of data may be

specificed on a £ = constant boundary. The second condition is constrained to satisfy the characteristic
relations.

ALGORITHM DEVELOPMENT

Following Kinsey and Barth {1984), we consider a one-parameter family of two-level methods for inte-
grating Eq. (3), vis

rna—-nh= (l - a) gs). +a %).+‘ ) (4)
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where ry = r(kAn). Fora =0, %, and 1 this produces an Euler explicit, trapesoidal rule, and Euler implicit
integration respectively. Substitution of Eq. (3) into Eq. (4) leads to

fap—r=(1-a) (B Are)], +a[B7HE - A"f)]u.l (5)

where B~1 A, and f are evaluated at the known k level. Rewriting this in delta law form and adding
fourth-order smoothing in £ results in

[I + a(B"A),.6¢ - G(VA)Z] (r..n - r.) = [B;l(f - A6¢) + E(VA)%} ) % (6)

This discretisation differs from that presented by Steger and Chaussee in that a delta formulation is
employed, implicit dissipation is added, and a variable integration scheme is used. The latter option is used
to control shock formation while the other options are important in smoothing initial discontinuities. In
each situation, a bad solution is avoided by introducing extra smoothing at the cost of losing orthogonality.
This tradeoff between smoothing and orthogonality can be unacceptable for severe geometries. In that case,
a better strategy is to control local departure from orthogonality via angle specification. For example, this
technique prevents shock formation by forcing initial fronts stzaddling a concavity in the data to propogate
away from each other. A more detailed analysis of these features as well as formulas for the source terms is
given in the full paper.

The boundary conditions for the mixed problem are theoretically obtainable from the characteristic re-
lations. In practice, these proved to be too complicated and were replaced by boundary conditions consistent
with the local form of the solution. For a left boundary these are

T-(Arj=y ~ 2Arj=3 + Arj=s) = 0 (7a)

t-Ar; =0 (7b)

here £ is a unit vector tangent to the boundary curve and Ar, is the vector perpendicular to Ar. Note that
these boundsry conditions are exact on linear data.

APPLICATIONS

Three applications are presented to demonstrate the algorithm described above. Other applications as
well as a more detailed discussion are presented in the full paper. The first example demonstrates the use of
smoothing and angle specification to control the propogation of initial singularities. In the second example,
grid lines are prevented from crossing by adjusting angle source terms at the initial surface. The last example
shows an inicrnal grid. This was generated by solving a mixed problem and shooting to the outer boundary.

CONCLUSIONS

A grid generation algorithm based on s 2x2 hyperbolic system of equations has been developed for
constructing meshes in two dimensions. By adding an angle source term to the Steger-Chaussee equations
and following the Kinsey-Barth algorithm, the standard objections to using hyperbolic systems for mesh
generaton have been overcome. Novel applications of this approach include controlling the propogation of
initial singulatities, preventing shock formation (crossing grid lines), and the generation of internal grids.
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A QUADRATURE APPROXIMATION OF THE BOLTZMANN COLLISION OPERATOR
IN AXISYMMETRIC GEOMETRY AND ITS APPLICATION TO PARTICLE METHODS

L GOND, £ J PUSTIELES, B NILOT

Ecole Polytechnique, Centre de Mathematiques Appliquees
Unite de Rech. Associee Au CNRS-756, 91128 Palaiseau, France

This paper is devoted to a presentation of a new numerical method for the
approximation of the non-linear Boltzmann equation.

in a first part, we present an explicit expression of the two-particle
Boltzmann collision operator in an axisymmetric geometry (for
distributions functions which are invarfant under the group of rotations
about a fixed axis), cf. [1]. Indeed, in numerous situations (study of shock
layers in gas dynamics, homogeneous field formalism in semiconductor
physics), such a geometric invariance is prescnted and seldom used to
reduce the computational cost of the simulation. Cur reduced expression of
the collision operator in axisymmetric geometry involves an integral
operator. The integration domain of which has a lower dimensionality than
for the general Boitzmann operator.

We take advantage of this feature to propose a direct evatuation of the
collision operator by quadrature formulae. This s in contrast to the usual
numerical methods which always rely on a Monte-Carlo procedure [2]. we
couple this new approximation method of the collision operator to a
particle method for the approximation of the differential part of the
Boltzmann equation, using the genera! ideas of P.A Raviart and S.
Mas-Gallic (3,4).

This numerical scheme has been applied to different test cases, with an
emphasis on the verification of the momentum and energy conservation by
the approximate collision operator (cf. figures). It has also been employed
for a real case arising In semiconductor physics. Other tests are in
progress. The conclusfons of the tests are encouraging for the
applicability of the method to other problems, cf [S).
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Q(f) is the two particle Boltzmann collision operator. The

initial data (dashed line) is a Maxwellian distribution. The
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Voo displaced Maxwellian by the action of the electric field (E =
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for the equation (af/at) + (qE/m)(af/av,) = Q(f) where Q(f) is

the two particle Boltzmann collision operator and the initial
data is a Maxwellian distribution. We obtain after 200 time
steps arelative error lower than 0,001 %.
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A Treatment of Discontinnities in Shock Capturing
' Finite Difference Methods

Mao De-kaug

Department of Mathematics
Shanghai University of Science and Technology

1. The partial differential equation
We consider the following nonlinear hyperbolic equation of scalar conservation law

U+ fo(u) = 0 (1)
with initial value u(z,0) = ug(z). llere [ is a twice differentiable, convex [unctiongi.e. f > 0. We would like

to mention here that the treatment presented in this artical can be extended to the svstem of conservation
laws. \We have already applied this method to the system of isentropic flow (refer to [1)]).

2. The principle idea
As we know, the so-called weak solution of (1) is a bounded measurable function u(z,t) which satisfies
/ (uPe + f(u)P)dzdt + /uo(.r)'b(z,O)dz =0 (2)
Rx jo,7( R
for all ® € C2(R x [0,T[). (2) means that the equality (1) is correct. only in distribution sense. Hence if u €
BV space, equation (1) is allowed to be nonvalid on a set of measure zero. In fact, such a measure zero set

often corresponds to the discontinuities of solution.

T approximate equation (1), we can use a type of difference schemes

Lyup = 0. 1)

Corresponding the fact that.equation (1) can be nonvalid cn a set of measure zero, we can add a grid function

Rty to the right-side of (3), which can be nonzcro on some grids. But in order to keep the consistincy of

discrele equation (3) with (1), we must make R, approach zero in distribution sense as h, 7 tends 1 zero.
Here h and T are mesh sizes. We shall call R, the artificial terms.

3. The construction of artificial terms
For convenience we only consider (3) a general three point scheme

1 .
uit! =} + o(h} 2 — hi-1s2) (N
he?re h}yrpa = h(.u;'“,u;-'?, h(u, u) =f(u),o=1/h i.s tl}e mesh ratio. For c.learit.y of t.lfe a.pproat':h we s!,: L
with a very special case, i.e. a Riemann problem which invoives a shock facing to the right. Obviously, it is
the simplest case of discontinuity. We consider in this case how to construct the artificial terms proper::,
and then extend the idea here to general case.

Riemann problem: The initial value is

y z<0
uo(z)z{u', £>0
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Weve wp > v and s = (flug) = [ )t = ) > 00 The <hoek diviedes the 10 0 Do fnto tao pairts. in
the et part u(e, 1) = g and in the right one u(z,t) = u,
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Now et us add an artificial term - pl'yy o /g to the numerical fax ff L4y i scheme (1), 1t s then reduced
to
n4l o __ no_ ”n — n N —a" o4

", S N U YT ALE UPS VTR LT (5
Becmpse the weak < duton of emann problem hins the properties described above, naturally we cousider
constrietung the antificial ternss o ake the selution alse has a similar construction. We try (o let the
nmerical calntion iy, involve auly oie diserete shock, which on every time Jevelis a jump ocenping only feo
meshes. Ciats bl g, = ug el o its eight wy, = a0 1 leads us Lo consider the following problem: suppose
that on o level the namecieal solution o has jost a juomp whivh is loeated on 3° - L~ j° 4+ 1, then how to

0

comstruct the artificial fenms toomake ",

keep the same properties, beo its jmmp is andy over two neshies

B order toomake the artificial forms boealowe ondy take pit g and ) to be ponzero. Cousidering that

VA
the shoek should e to vight we have 1w choiees:

1Y ‘The jurap of neenieal solutior on 24 1 level is located on j* = 1~ j° 4 1 (as shown in Fig. 1), Wiite
the differenee cqnations at ponts §7* ~ 1 j% and J* 4+ U respectively we get -

up = oy — ﬁ(/I;. 1f2 = f(ll[)) +- I';I'—IIQ
u;'.“ =g - a(hiepiye — h;._”?) + Pl = p;'.-‘/.‘, (6)
up = u, = o) = Dleyy0) = piegiyn
Solve them to obtaim
u;-'.“ =i —o(f(u.) ~ f(u))
Pieovge = a0l 2y e = [O0)) (N

Piepage == = (Sl = )

—I i n+1

j*-_1 j* j*+1
Iig. |

2Y The gnmp on o 4 1 levelis located on 3% ~ % 4 2 (also as shown in Fig. 1), This ease is treated in a

Lashion analogue (o the above situation.

Heteo there ave essentinlly two ditfecent ways to constriet the artificial ferms. We cannot use only one way
frean the heginming to the end, Soin a correct algorithm the two ways st be taken appropriately. Then
A question arises: when shoudd the first or second way be taken? We now consider it at a different angle,
Mudtiplying cquation (5) by @7 h = @b nr)h, sunning them by parts with v spect 9 j and . we arrive

HY H
e - G — "
lJ {

2 2|

na e

P
. -1
J u;'” + p) ]

] \ b 0o
- hj_,/._,]hr + Q) hebju;
’ = oo

~ x 1)n — ,',n

=9 E‘ -2 1=l .

= - Pievpahr (&)
S RN
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When h, 7 tend to 0, the left side of (8) approaches to the left side of (2). In order that the approximate
solution tends to the weak solution, the right side of (8) must approach to zero as h,r — 0. Notice that the
numerical solution has only one jump on every time level. Assume that it is Jocated on M=l "+1.
Also notice that at every time level only two artificial terms, Pja_1y2 and pja,;,, are nonzero. Therefore,
the right side of (8) is reduced to

ki Q.‘n - Q".-_! n 0""'}[ "Q;.- -1
E(J—_'L‘h Pinoyat "l_h_'_Pj"-Hh)’lfd (9)
n=0

Ife>6>0, and Pj_1/2s Pja41/2 are uniformly bounded with respect to k, r and n, we can easily sce
that (9) tends to zero as h,7 — 0. The main consideration of our method is to keep the artificial terms
P~ _1/2 and pja 4y, uniformly bounded. One finds that they will be uniformly bounded if ujs, the value of
numerical solution at the middle point of the jump, is uniformly bounded.

We now still assume that the jump on n level is located on j* — 1~ j* 4 1 (i.e. j* = J"). From (7) we find
that in the first case, u}+!, the value at middle point on n + 1 level, increases by a(w — u,) over u}.. In the
second case, one finds that u;-‘.";'l, aiso the value at middle point on n+ 1 level, decreases by (1 —as)(u; — u,)
down u}., if CFL-condition, |of’(u)| < 1 holds. It is then easy to see that in order to keep u]. uniformly
bounded we should make the algorithm as follows: When u?. becomes too small, the first way is taken,
otherwize the second way is taken. In my papers I do this as follows: When

i < w4 o(f(w) - f(u,)) (10)

is true the first way is taken, otherwize the second way. In doing so, not only the artificial terms are kept
uniformly bounded, but also the value of numerical solution at middle point, uj., varies only between w
and u,.

4. General case

In general case we cannot apply this technique to all the meshes on which u decrcases with respect to j.
Because if doing so, we cannot make the artificial terins only exist locally. Therefore we choose « positive
parameter « > 0, and only apply the technique to the mesh scctions on which the u} decreascs, and its jump
is greater than a. We call these mesh sections on which the technique is applied the 'generated sections’.
The generated section occupies at least two meshes. Then the computation on generated sections procecds.
as follows: If, for example, the generated section occupies two meshes j* — 1 ~ j* + 1, then we use formula
(5) to compute the ul'*!, with the artificial terms P}«_1/2: P}+ 4172 defined by (7) only in which w, ix replaced
by u}._, and u, by Y41 A

The exact weak solution may involve many interactions of shocks. These cases may also occur in the
numerical computation, i.e. discrete shocks meet and nierge in a proper way. The algorithm handles all
these cases. :

5. The main thcoretical results

a) Under certain conditions one can choose a convergent subsequence from the numerical solutions, and its
limit is a weak solution of (1).

The so-called ’certain conditions’ mentioned above contain mainly two parts. One is that the nuinerical
solution 7 and its total variation respect to j are uniformly bounded. The other implies that the artificial
terms exist only locally. .

b) Il we take the original scheme (4) to be TVD scheme (so-called after Harten [2]), i.e.

ut = ) + G jaaa(ufe ~ o]) = C2 yoapa(e] =15 y) (1)
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then the eertain conditions™ in a) can be satisfied by the algoritlon. In fact we can prove the algorithm in
this case also TV in a slightly different. sense.

) Imake some further improvement to the algorithm, then under certain conditions we can prove Lhat the
above weak solition satisfies entropy condition for any convex enfropy V(n), i.c.

/ /('l’gl'(u) 4+ ®, 1 (u))dedt >0 (12)

0 -
for all test. functions ® € €2, ® > 0, with bounded sapport, Here F(n) = [V [ ().

As we know that the entropy violation in computation often oceurs in the case when unmerical =olution
increnses with a great jump. In this case the numerical resull may be not a rarefaction wave, but ravefaction
shock. The above so-called “some further ilmprovement” is applied to these sections of nmerical solution to
avoid the entropy vielation,

d} Also the “certain conditions’ can be satisfied by the algorithm if the otiginal scheme (1) is taken to be
TV

G. Iligh resolntion treatment of discontinuities

From the previous discussion we see that the evolution of a diccrete shock s mainly determined by the value
ol numerical solution at the widdle point of a generated section. flence (1o gt he same 1elation hetween
the vatne at the widdle point and the shock position at every time level. We therefore use this - alue to
determine still further the shock position in the generated section at every time level. 11 the generated section
occnpies only two grids j* — 1 2 j" 4+ 1, we use the following fornula

n

. "] n
spos™ = jhr = 0.5h+ h att - "

PR o] It=1

—ul.
Ak d (3

to romputte the coordinate of shock position spes™. For generated cections of niore then two grids we alsn
have asimilar fornmlar, In fact, il we sse the above formula in previons Riemann problem involving o shock,
we can find that the shock is just at 1he same position as the exact solution at every e level,

7. Numerical experiment

We take the f(u) = 3™ i original scheme to be Lax-WendrefT sehee with a numerieal viscosity which
is very imeh like that of Majda ([3]), and we use the algorithm to compnte mauy examples. Here we only
present two of them.

Ex:uuple 1. The initial value is
2 <0205

no(7) = {0 2> 0.205

This problemn involves a shoek with speed of 1. Let v = 0.5, h = 0.01, ¢ = 0 45. The numerical result. is
presented in Fig. 2.

0.6

(a)
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Fig. 2-a shows a shock curve which is drawn by connecting all the spes™ on every time level successively.
Fig. 2-b shows the discrete shock. Fig. 2-c shows the numerical solution on the 110th level. Fig. 2 indicates
that the numerical solution obtained is almost an exact solution.

Example 2. The initial value is

1 z < 0.185

-1 0185<z<02
“() =1 e=0s 03<z<08

1 08<z<1

This problem involves a shock with speed of 0, and a rarefaction wave. Let o = 0.1, h = 0.01, ¢ = 0.9. The
numerical result is presented in Fig. 3.

ta) . th) ° )

Fig. 3

: Fig. 3-a shows the shock curve, Fig. 3-b shows the discrete shock, Fig. 3-c shows the numerical solutio .
1 ' the 100th level.
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BOUNDARY CONDITIONS FOR NONLINEAR HYPERBOLIC

SYSTEMS OF CONSERVATION LAWS.

Frangois DUBOIS & Philippe LE FLOCH

Ecole Polytechnique
Centre de Mathématiques Appliquées
91128 Palaiseau Cédex - France

1. Introductio

We study initial-boundary value problems for non-linear
hyperbolic systems of conservation laws. Recall that with strong Oirichlet
boundary conditions the associated problem is not well posed. Generally
there 1is neither existeuce nor uniqueness. Thus weaker conditions are
necessary ; in the linear case by example we know that data are given only
on incoming characteristics.

We consider two formulations of boundary conditions. A first
approach is based on vanishing viscosity method and a second one is related
to the Riemann problem.

Equivalence between these conditions 1is studied. The latter
formulation is extended to treat numerically physically relevant boundary
conditions. Monodimensional experiments will be presented.

2. Boundary entropy inequality (first formulation)

We consider a non-1inear hyperbolic system of conservation laws
in one space dimension :
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(1) g% + g; f(u) =0 ; u(x,t) eR , f(u).e R".

and we suppose that there exists at least a pair (n,q) of entropy-flux. The
initial boundary value problem obtained by the viscosity method (¢ > 0)

[ du* d e
— + — flu') = — >0, t>0
at ax (') ¢ X
2 1
(2) ut ( x,0) = v, (x) x>0
uc(0,t) = u (t) t>0

admits a unique solution u® and we study the behaviour of u° at the
boundary as ¢ tends to zero. We have

Theorem 1  Suppose that u° is bounded in W):!(R* x R, R") and converges

4
in L}oc touas ¢ > 0. For each admissible pair (n,q) of entropy-flux we
| have :
(3)  q(u(0*,t)) - aluy(t)) - n’(uy(t)).(F(u(0*,t)) - f(u,(t))) <O
: between the taken value wu(0',t) and the prescribed value ug(t) at the
; boundary.
1
. This result was obtained in [4] and the inequality (3) was
% independently proposed in [1,6] by other methods. Then given a state u,, we
; may define a (first) set of admissible valges at the boundary :
i : :
E(u) ={ veR , a(v) - aluy) - 0" (u;).(F(v) - f(u,)) <O

1 % ¥(n,q) pair of entropy - flux }

Therefore the boundary condition is :
u(o*,t) € E(uy(t)) , t > 0.

The set £(u,) 1s described in [4] in the cases of both linear systems and
(non necessarily convex) scalar conservation laws. For instance, 1in the
case of Burgers’ equation we have :
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Proposition 1 5] ueR, f(u) -_% ,uf
E(u) =)o, -0 {u} w20
E(uy) = ]- =, 0] uy <o - ' .

We enphasize that by the lack of entropy functions, there is no
sufficiently information to explicit the E-sets in general cases.

3. Approach by the Riemann problem (second formulation)

For the second formulation of the boundary condition [3,4] we
suppose that each Riemann problem R(u ,u,) associated with (1) admits a

: X
unique entropy solution denoted by w [ i Py, uR]. We define a second

set of admissible values :
V(y,) = { w(0® ; u, , u), u, varying in R}
we have the following result :

Theorem 2 Let Vp, Y, be constant states. The problem

?]

5% + g; f(u) =0 x>0, t>0
(4) u(x,0) = v, x>0

u{o,t) € V(u,) t>0

is well posed in the class of functions which consist of constant states
separated by at most n elementary waves (rarefactions, shocks, contacts).

Proposition 2 In particular cases of strictly hyperbolic linear systems
and (non necessarily convex) scalar conservation laws, we have

E(uy) = V(u)) Vu, .
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The advantage of the second formulation {s that ¥ can be easily computed.
For the p-system, V(u)) is exactly the 1l-wave containing u,. And, in
[3,4] we have given details on the V-sets in the case of barotropic Euler
equations.

4. Nonlinear numerical boundary conditions for Euler equations

Classical boundary conditions for Euler equations are related
to the theory of . characteristics. As usual, we distinguish between four
cases : the fluid may be sub or super-sonic at the in or out-flow and
physical parameters can be associated with each case ([71) :

(1) supersonic inflow : a given state u,

(it) subsonic inflow total enthalpy and physical entropy
(iii) subsonic outflow : static pressure

(iv) supersonic outflow : none data.

We review briefly the main ideas of [2]. In a Godunov-type
scheme the computation of a numerical flux ¢ at the boundary is just
necessary to define the numerical evolution. In each case (i) - (iv) a
partial Riemann problem P (M, z) can be posed between the above described
manifold M associated with each condition, and the taken value near the
boundary z . The flux ¢ is then computed thanks to 3 ; 2 ; 1 ; 1 or 0 wave:
respectively between ¥ and z. Numerical 1D test cases on shock tube ard
nozzles involving the first order Osher scheme will beg presented at tic
conference, showing the attractive convergence properties of the boundar -
conditions in evolution towards steady state.
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ON GODUNOV TYPE METHODS

by B. Einfeldt
RWTH Aachen, West Germany
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In the last several years Godunov-type methods have been applied successfully
for the calculation of inviscid compressible flow. In practice these methods are
characterized by their robustness and their possibility of computing flows with
very complicated shock structures.

Godunov [7] used the nonlinear Riemann problem as “building block” for his
numerical method. This allows a self operating treatment of weak and strong shock
waves. The numerical solution represents shocks nearly optimally thin, typical
is a monotone profile over one to three computational cells without unphysical
L oscillations. From the theoretical point of view Godunov’s method is an extension
of the classical Courant-Isaacson-Rees scheme [8]. The underlying physical picture
of Godunov’s method is useful for the interpretation of certain schemes and to
construct new ones.

The recent interest in Godunov-type methods was engendered by van Leer,
! who realized the importance of Godunov's method and invented a second-order ex-
tension. Further development along this line were made by Colella and Woodward
(1], Colella [2], and Fryxell, Woodward, Colella, and Winkler [16]. A comparison
] of some of these Godunov-type methods with more classical methods can be found
in [17). .

The disadvantage of Godunov’s method and its higher-order extensions is
the difficulty of solving the nonlinear Riemann problem exactly, especially for
. materials with complex equations of state. The exact solution of the Riemann
| ! problem requires an iterative procedure, which leads to relatively complex and time
_ consuming numerical codes. Since computational efficiency is a major requirement {
1 for applied numerical methods, this has restricted the extensive applications of }é
Godunov-type methods. ;

To overcome this drawback, several approximations to the Riemann problem
have been developed. For the ideal equation of state there are by now particular

85




approximate “Riemann solver” available, among them are the methods developed
by Osher and Solomon [9], Roe {12] and Pandolfi [10]. These linear approximations
are also of interest for the aecrodynamic field where they provide a foundation for
the construction of more elaborate schemes {13|, [14]. More analytical effort is
required if a general equation of state is considered. So far, only two Riemann
solvers have been developed in this case. One iterative method by Colella and
Glaz (3] and a second explicit method by Dukowicz [5].

In the presentation we describe a new approximate Riemann solver [5] for
compressible gas flow. In contrast to previous Riemann solvers, where numerical
approximations for the pressure and the velocity at the contact discontinuity are
computed, we derive a numerical approximation for the largest and smallest signal
velocities in the Riemann problem. Having obtained the numerical signal velocities
we use theoretical results by Harten, Lax, and van Leer (8] to obtain the full
approximation. A stability condition for the numerical signal velocities is given.
We show that the addition of an artificial shock viscosity term of the van Neumann
type is equivalent to the spreading of the numerical signal velocities. Thus we
obtain a close relationship to artificial shock viscosity methods [11]. The great
advantage of the Riemann solver is its simplicity. The approximation substantially
reduces the program’s complexity while retaining essential features of Godunov’s
method, especially the accurate approximation of shock waves. The computation
of the signal velocities for a general equation of state will be discussed. We show
a relation to the recent generalized Roe Average of Vinokur |15).

Numerical results for the focussing of a plane shock wave in air 4 = 1.4 and
a typical shock tube problem for some specimen equations of state are shown.
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Time-Marching Method to Solve Steady
Incompressible Navier Stokes Equations for
Laminar and Turbulent Flow

by

Pcter Eliasson and Arthur Rizzi
FFA The Acronautical Research Institute of Sweden
161 11 Bromma, Sweden
and Y
H.I. Andersson o
Norwegian Institute of Technology
Trondhcim, Norway

1 INTRODUCTION

Recently Miiller and Rizzi developed a Navier Stokes solver based on an explicit
Runge-Kutta finite volume method Lo simulate laminar compressible flows over wings
{1). In this paper we arc concerned with incompressible flow. If we were to simply
apply the compressible code to this problem we would find that it would not converge
well at all because with decrcasing Mach number sound waves travel at a speed much
larger than the speed of convection and they dominate the systein making it stifl.
This increasing disparity in wave speeds causes the governing system of equations
to be poorly conditioned, and the stability of the computation is greatly impaired.
If, however, the interest is only the steady flow, artificial compressibility is one way
round the difficulty, because this approach removes the sound waves from the system
by prescribing a pseudotemporal evolution for the pressure through the continuity
equation which is hyperbolic and which converges to the truc steady state value.

Our purpose here is to prescribe a rather general numerical method that takes
the artificial compressibility approach for solving the steady incompressible Navier
Stokes equations. We show how it leads to a hyperbolic/parabolic system, carry
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out a numerical study of its condition, set forth the CFL stability limit for the time
integration, and develop a k — ¢ turbulence model. Appropriate numerical far-field
and solid-wall boundary conditions are formulated also.

2 MATHEMATICAL MODEL

Since the continuity equation for incompressible flow contains no time dependent
term, an artificial time dependent term is added to the continuity cquation. This
is done by using the method proposed by Chorin [1]. The Navier-Stokes equations
governing an incompressible flow, using the above method for the continuity equation,
can be stated in the following way:

19p  ,0u; _

Qus , Quns | 100 _u 0 0 g "

ot 0r;  poOx; poOr;0z;
where pg is the constant density, u; are the velocity components, p is the viscosity
cocflicient and p the pressure. The viscosity coefficient p is supposed to be constant,
and ¢ is an arbitrary parameter {or optimal convergence. These equations have no
physical meaning until steady state is obtained.

The incompressible Navier Stokes equations are spatially discretized by the finite-
volume technique. The velocity gradients of the stress tensor are cell averaged [1).
Applying the gradient theorein, the volume integrals over the gradients are expressed
by surface integrals over the cell boundary. At a cell interface, the velocity is ap-
proximated by the arithmetic average of their values in the two adjacent cells. Ouce
the flux tensor is determined in each cell, its value at a ccll interface is approximated
similarly by arithmatic averaging. On a Cartesian grid, the present finite-volume
approximation is equivalent to a seccond-order accurate central difference discretiza-
tion involving 13 points opposed to the conventional 9.ones. For the viscous terms,
the latter compact differencing is more accurate than the present approach, but our
scheme offers a larger stability bound.

A linear stability condition is derived for explicit Runge-Kutta methods applicd
to the Navier Stokes equations. The condition is based on the scalar model equation
obtained by linearizing the cquations. The geometrical interpretation of the metric
expression in transformed coordinates is used to apply the von Neumann analysis for
finite-differences to finite-volumes. The resulting stability condition determines the
local time steps of the present Runge-Kutta time integration scheme.

The k — e turbulence model requires two extra equations to be solved. These
cquations are spatially discretized by the same finite volume technique, and a similar

et e o= S e - - - R
L % -




Ty

——

stability condition-is derived for the determination of the local time step.

3 RESULTS

Results have been obtained for both external and internal flows. Results for the
external flow were obtained over a NACA0012 airfoil, and over a backward facing
step for the internal flow.

The results for flow around the NACA0012 airfoil, Re=2880000, a=0 arc shown
on the 129 x 33 O-mesh after 3000 time steps. The flow becomes turbulent after
the transition at T/I = 0.5 according to existing experimental data. In the pres-
sure coefficient diagram (Fig. 1) there are comparisons between the incompressible
Navier-Stokes solution, an Euler solution and the experimental data available. The
two numerical results are almost identical, as they should be for such a high Reynolds
number, except at a small region at the leading edge. The agreement between numer-
ical prediction and experimental data for the pressure coeflicient is very good even
after the transition.

Results have also been obtained for internal flow, RE=50, 2:3 expansion, over
a backward facing step, the problem of a 1984 GAMM workshop. The point of
reattachment can be scen in the streamline plot (Fig. 2) and the wall shear stress
plot (Fig. 3). It was calculated to = /(H — h) = 2.83 . The experiments state 3.0 for
the point of recattachment, though most of the participants of the workshop managed
to predict the reattachment point between 2.7 and 2.9. The agreement between
numcrical results and experimental data is quite satisfying in the wall shear stiess
plot. The evolution of the maximum velocity (the maximum velocity along the -
axis in x-dircction, Fig. 4) also shows a good agrcement between numerical and
experimental data. 7

Further dctails will be discussed and additional cases, both laminar and turbulent,
will be computed in the complcte paper.
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